https://oldena.lpnu.ua/handle/ntb/46467
Title: | Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol |
Other Titles: | Експериментальні та теоретичні дослідження протикорозійних властивостей тимолу |
Authors: | Vorobyova, Victoria Chygyrynets’, Olena Skiba, Margarita Overchenko, Tatiana |
Affiliation: | National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Ukrainian State Chemical-Engineering University |
Bibliographic description (Ukraine): | Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol / Victoria Vorobyova, Olena Chygyrynets’, Margarita Skiba, Tatiana Overchenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 261–268. |
Bibliographic description (International): | Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol / Victoria Vorobyova, Olena Chygyrynets’, Margarita Skiba, Tatiana Overchenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 261–268. |
Is part of: | Chemistry & Chemical Technology, 2 (13), 2019 |
Issue: | 2 |
Issue Date: | 28-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | атмосферна корозія тимол сталь інгібітор корозії квантово-хімічні розрахунки atmospheric corrosion thymol steel volatile inhibitor quantum chemical calculations |
Number of pages: | 8 |
Page range: | 261-268 |
Start page: | 261 |
End page: | 268 |
Abstract: | Тимол досліджено як новий леткий інгібітор
атмосферної корозії сталі. Для оцінки складу та
характеристики сформованих захисних шарів використовували
гравіметричні та електрохімічні дослідження, доповнені
спектральними FT-IR та мікроскопічними методами аналізу
SEM. Плівка, утворена на поверхні сталі з парогазової фази
тимолу, забезпечує ефект післядії на рівні 90% за періодичної
конденсації вологи впродовж 504 годин. Для оцінки
адсорбційної здатності тимолу проведені квантово-хімічні
розрахунки енергетичних параметрів молекули тимолу. The inhibition effect of thymol during the early stage of steel corrosion under adsorbed thin electrolyte layers was investigated. Its vapor corrosion inhibition property was evaluated under simulated operational conditions. Electrochemical techniques complemented by FTIR and SEM surface analyses were used to evaluate the composition and characteristics of the layers. The results indicate that thymol can form a protective film on the metal surface, which protects the metal against further corrosion. Quantum chemical calculations studies were also performed to support weight loss and electrochemical experimental observations. |
URI: | https://ena.lpnu.ua/handle/ntb/46467 |
Copyright owner: | © Національний університет „Львівська політехніка“, 2019 © Vorobyova V., Chygyrynets’ O., SkibaM., Overchenko T., 2019 |
URL for reference material: | https://doi.org/10.1016/j.surfcoat.2009.10.054 https://doi.org/10.1016/j.corsci.2005.06.007 https://doi.org/10.5006/1.3277627 https://doi.org/10.1007/978-94-017-7540-3_6 https://doi.org/10.1007/s11003-015-9778-z https://doi.org/10.1007/s11003-013-9617-z https://doi.org/10.1016/j.corsci.2013.08.025 https://doi.org/10.1016/j.jtice.2015.06.009 https://doi.org/10.1016/S0031-8914(34)90011-2 https://doi.org/10.1016/j.corsci.2010.11.016 https://doi.org/10.1021/ja00364a005 https://doi.org/10.1063/1.436185 https://doi.org/10.1021/cr040109f https://doi.org/10.1021/ja983494x https://doi.org/10.1016/j.comptc.2014.11.017 https://doi.org/10.1007/s10800-009-0066-1 https://doi.org/10.1016/j.electacta.2006.05.025 https://doi.org/10.5006/1.3290328 |
References (Ukraine): | 1. Zhang D-Q., Gao L-X., Zhou G-D.: Surf. Coat. Technol., 2010, 204, 1646. https://doi.org/10.1016/j.surfcoat.2009.10.054 2. Zhang D-Q., An Z-X., Pan Q-Y. et al.: Corros. Sci., 2006, 48, 1437. https://doi.org/10.1016/j.corsci.2005.06.007 3. Sudheer A., Quraishi E., Eno E., NatesanM.: Int. J. Electrochem. Sci., 2012, 7, 7463. 4. Quraishi M., Jamal D.: Corrosion, 2002, 58, 5, 387. https://doi.org/10.5006/1.3277627 5. Montemor M.: Act. Protect. Coat., 2016, 233, 107. https://doi.org/10.1007/978-94-017-7540-3_6 6. Chygyrynets’ E., Vorobyova V.: Chem. Chem. Technol., 2014, 8, 235. 7. Vorob’iova V., Chyhyrynets’ O., Vasyl’kevych O.:Mater. Sci., 2015, 50, 726. https://doi.org/10.1007/s11003-015-9778-z 8. Chyhyrynets O.,Vorob'iova V.:Mater. Sci., 2013, 49, 318. https://doi.org/10.1007/s11003-013-9617-z 9. Poongothai N., Rajendran P., NatesanM. et al.: Indian J. Chem. Technol., 2005, 12, 641. 10. Premkumar P., Kannan K., NatesanM.: Asian J. Chem., 2008, 20, 445. 11. Premkumar P., Kannan K., NatesanM.: J. Metall. Mater. Sci., 2008, 50, 227. 12. Li X., Deng S., Fu H., Xie X.: Corros. Sci., 2014, 78, 29. https://doi.org/10.1016/j.corsci.2013.08.025 13. Leygraf C., Wallinder I.,Tidblad J., Graedel T.: Atmospheric Corrosion. John Wiley & Sons, Inc., Hoboken 2016. 14. Kaya S., Tüzün B., Kaya C., Obot I.: J. Taiwan Inst. Chem. Eng., 2016, 58, 528. https://doi.org/10.1016/j.jtice.2015.06.009 15. Gece G.: Corros. Sci., 2008, 50, 11, 2981. https://doi.org/10.1016/j.jtice.2015.06.009 16. Koopmans T.: Physica, 1934, 1, 104. https://doi.org/10.1016/S0031-8914(34)90011-2 17. Kovacevic N., Kokalj A.: Corros. Sci., 2011, 53, 3, 909. https://doi.org/10.1016/j.corsci.2010.11.016 18. Parr R., Pearson R.: J. Am. Chem. Soc., 1983, 105, 7512. https://doi.org/10.1021/ja00364a005 19. Parr R., Donnelly R., LewyM., Palke W.: J. Chem. Phys., 1978, 68, 3801. https://doi.org/10.1063/1.436185 20. Pearson R.: Proc. Nats. Acad. Sci. USA, 1986, 83, 8440. 21. Chattaraj P., Sarkar R., Roy D.: Chem. Rev., 2006, 106, 2065. https://doi.org/10.1021/cr040109f 22. Parr R., von Szentpaly L., Liu S.: J. Am. Chem. Soc. 1999, 121, 1922. https://doi.org/10.1021/ja983494x 23. Kaya S., Kaya C.: Comput. Theor. Chem., 2015, 1052, 42. https://doi.org/10.1016/j.comptc.2014.11.017 24. HyperChemTM, Hypercube, Inc., 1994 25. Rosliza R. et al.: J. Appl. Electrochem., 2010, 40, 833. https://doi.org/10.1007/s10800-009-0066-1 26. FerreiraM., Varela H., Torresi R., Tremiliosi-Filho G.: Electrochim. Acta, 2006, 52, 434. https://doi.org/10.1016/j.electacta.2006.05.025 27. Lukovits I., Kálmán E., Zucchi F.: Corrosion. 2001, 57, 3. https://doi.org/10.5006/1.3290328 |
References (International): | 1. Zhang D-Q., Gao L-X., Zhou G-D., Surf. Coat. Technol., 2010, 204, 1646. https://doi.org/10.1016/j.surfcoat.2009.10.054 2. Zhang D-Q., An Z-X., Pan Q-Y. et al., Corros. Sci., 2006, 48, 1437. https://doi.org/10.1016/j.corsci.2005.06.007 3. Sudheer A., Quraishi E., Eno E., NatesanM., Int. J. Electrochem. Sci., 2012, 7, 7463. 4. Quraishi M., Jamal D., Corrosion, 2002, 58, 5, 387. https://doi.org/10.5006/1.3277627 5. Montemor M., Act. Protect. Coat., 2016, 233, 107. https://doi.org/10.1007/978-94-017-7540-3_6 6. Chygyrynets’ E., Vorobyova V., Chem. Chem. Technol., 2014, 8, 235. 7. Vorob’iova V., Chyhyrynets’ O., Vasyl’kevych O.:Mater. Sci., 2015, 50, 726. https://doi.org/10.1007/s11003-015-9778-z 8. Chyhyrynets O.,Vorob'iova V.:Mater. Sci., 2013, 49, 318. https://doi.org/10.1007/s11003-013-9617-z 9. Poongothai N., Rajendran P., NatesanM. et al., Indian J. Chem. Technol., 2005, 12, 641. 10. Premkumar P., Kannan K., NatesanM., Asian J. Chem., 2008, 20, 445. 11. Premkumar P., Kannan K., NatesanM., J. Metall. Mater. Sci., 2008, 50, 227. 12. Li X., Deng S., Fu H., Xie X., Corros. Sci., 2014, 78, 29. https://doi.org/10.1016/j.corsci.2013.08.025 13. Leygraf C., Wallinder I.,Tidblad J., Graedel T., Atmospheric Corrosion. John Wiley & Sons, Inc., Hoboken 2016. 14. Kaya S., Tüzün B., Kaya C., Obot I., J. Taiwan Inst. Chem. Eng., 2016, 58, 528. https://doi.org/10.1016/j.jtice.2015.06.009 15. Gece G., Corros. Sci., 2008, 50, 11, 2981. https://doi.org/10.1016/j.jtice.2015.06.009 16. Koopmans T., Physica, 1934, 1, 104. https://doi.org/10.1016/S0031-8914(34)90011-2 17. Kovacevic N., Kokalj A., Corros. Sci., 2011, 53, 3, 909. https://doi.org/10.1016/j.corsci.2010.11.016 18. Parr R., Pearson R., J. Am. Chem. Soc., 1983, 105, 7512. https://doi.org/10.1021/ja00364a005 19. Parr R., Donnelly R., LewyM., Palke W., J. Chem. Phys., 1978, 68, 3801. https://doi.org/10.1063/1.436185 20. Pearson R., Proc. Nats. Acad. Sci. USA, 1986, 83, 8440. 21. Chattaraj P., Sarkar R., Roy D., Chem. Rev., 2006, 106, 2065. https://doi.org/10.1021/cr040109f 22. Parr R., von Szentpaly L., Liu S., J. Am. Chem. Soc. 1999, 121, 1922. https://doi.org/10.1021/ja983494x 23. Kaya S., Kaya C., Comput. Theor. Chem., 2015, 1052, 42. https://doi.org/10.1016/j.comptc.2014.11.017 24. HyperChemTM, Hypercube, Inc., 1994 25. Rosliza R. et al., J. Appl. Electrochem., 2010, 40, 833. https://doi.org/10.1007/s10800-009-0066-1 26. FerreiraM., Varela H., Torresi R., Tremiliosi-Filho G., Electrochim. Acta, 2006, 52, 434. https://doi.org/10.1016/j.electacta.2006.05.025 27. Lukovits I., Kálmán E., Zucchi F., Corrosion. 2001, 57, 3. https://doi.org/10.5006/1.3290328 |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 2 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v13n2_Vorobyova_V-Experimental_and_Theoretical_261-268.pdf | 530.59 kB | Adobe PDF | View/Open | |
2019v13n2_Vorobyova_V-Experimental_and_Theoretical_261-268__COVER.png | 534.83 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.