Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46467
Title: Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol
Other Titles: Експериментальні та теоретичні дослідження протикорозійних властивостей тимолу
Authors: Vorobyova, Victoria
Chygyrynets’, Olena
Skiba, Margarita
Overchenko, Tatiana
Affiliation: National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
Ukrainian State Chemical-Engineering University
Bibliographic description (Ukraine): Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol / Victoria Vorobyova, Olena Chygyrynets’, Margarita Skiba, Tatiana Overchenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 261–268.
Bibliographic description (International): Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol / Victoria Vorobyova, Olena Chygyrynets’, Margarita Skiba, Tatiana Overchenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 261–268.
Is part of: Chemistry & Chemical Technology, 2 (13), 2019
Issue: 2
Issue Date: 28-Feb-2019
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
Keywords: атмосферна корозія
тимол
сталь
інгібітор корозії
квантово-хімічні розрахунки
atmospheric corrosion
thymol
steel
volatile inhibitor
quantum chemical calculations
Number of pages: 8
Page range: 261-268
Start page: 261
End page: 268
Abstract: Тимол досліджено як новий леткий інгібітор атмосферної корозії сталі. Для оцінки складу та характеристики сформованих захисних шарів використовували гравіметричні та електрохімічні дослідження, доповнені спектральними FT-IR та мікроскопічними методами аналізу SEM. Плівка, утворена на поверхні сталі з парогазової фази тимолу, забезпечує ефект післядії на рівні 90% за періодичної конденсації вологи впродовж 504 годин. Для оцінки адсорбційної здатності тимолу проведені квантово-хімічні розрахунки енергетичних параметрів молекули тимолу.
The inhibition effect of thymol during the early stage of steel corrosion under adsorbed thin electrolyte layers was investigated. Its vapor corrosion inhibition property was evaluated under simulated operational conditions. Electrochemical techniques complemented by FTIR and SEM surface analyses were used to evaluate the composition and characteristics of the layers. The results indicate that thymol can form a protective film on the metal surface, which protects the metal against further corrosion. Quantum chemical calculations studies were also performed to support weight loss and electrochemical experimental observations.
URI: https://ena.lpnu.ua/handle/ntb/46467
Copyright owner: © Національний університет „Львівська політехніка“, 2019
© Vorobyova V., Chygyrynets’ O., SkibaM., Overchenko T., 2019
URL for reference material: https://doi.org/10.1016/j.surfcoat.2009.10.054
https://doi.org/10.1016/j.corsci.2005.06.007
https://doi.org/10.5006/1.3277627
https://doi.org/10.1007/978-94-017-7540-3_6
https://doi.org/10.1007/s11003-015-9778-z
https://doi.org/10.1007/s11003-013-9617-z
https://doi.org/10.1016/j.corsci.2013.08.025
https://doi.org/10.1016/j.jtice.2015.06.009
https://doi.org/10.1016/S0031-8914(34)90011-2
https://doi.org/10.1016/j.corsci.2010.11.016
https://doi.org/10.1021/ja00364a005
https://doi.org/10.1063/1.436185
https://doi.org/10.1021/cr040109f
https://doi.org/10.1021/ja983494x
https://doi.org/10.1016/j.comptc.2014.11.017
https://doi.org/10.1007/s10800-009-0066-1
https://doi.org/10.1016/j.electacta.2006.05.025
https://doi.org/10.5006/1.3290328
References (Ukraine): 1. Zhang D-Q., Gao L-X., Zhou G-D.: Surf. Coat. Technol., 2010, 204, 1646. https://doi.org/10.1016/j.surfcoat.2009.10.054
2. Zhang D-Q., An Z-X., Pan Q-Y. et al.: Corros. Sci., 2006, 48, 1437. https://doi.org/10.1016/j.corsci.2005.06.007
3. Sudheer A., Quraishi E., Eno E., NatesanM.: Int. J. Electrochem. Sci., 2012, 7, 7463.
4. Quraishi M., Jamal D.: Corrosion, 2002, 58, 5, 387. https://doi.org/10.5006/1.3277627
5. Montemor M.: Act. Protect. Coat., 2016, 233, 107. https://doi.org/10.1007/978-94-017-7540-3_6
6. Chygyrynets’ E., Vorobyova V.: Chem. Chem. Technol., 2014, 8, 235.
7. Vorob’iova V., Chyhyrynets’ O., Vasyl’kevych O.:Mater. Sci., 2015, 50, 726. https://doi.org/10.1007/s11003-015-9778-z
8. Chyhyrynets O.,Vorob'iova V.:Mater. Sci., 2013, 49, 318. https://doi.org/10.1007/s11003-013-9617-z
9. Poongothai N., Rajendran P., NatesanM. et al.: Indian J. Chem. Technol., 2005, 12, 641.
10. Premkumar P., Kannan K., NatesanM.: Asian J. Chem., 2008, 20, 445.
11. Premkumar P., Kannan K., NatesanM.: J. Metall. Mater. Sci., 2008, 50, 227.
12. Li X., Deng S., Fu H., Xie X.: Corros. Sci., 2014, 78, 29. https://doi.org/10.1016/j.corsci.2013.08.025
13. Leygraf C., Wallinder I.,Tidblad J., Graedel T.: Atmospheric Corrosion. John Wiley & Sons, Inc., Hoboken 2016.
14. Kaya S., Tüzün B., Kaya C., Obot I.: J. Taiwan Inst. Chem. Eng., 2016, 58, 528. https://doi.org/10.1016/j.jtice.2015.06.009
15. Gece G.: Corros. Sci., 2008, 50, 11, 2981. https://doi.org/10.1016/j.jtice.2015.06.009
16. Koopmans T.: Physica, 1934, 1, 104. https://doi.org/10.1016/S0031-8914(34)90011-2
17. Kovacevic N., Kokalj A.: Corros. Sci., 2011, 53, 3, 909. https://doi.org/10.1016/j.corsci.2010.11.016
18. Parr R., Pearson R.: J. Am. Chem. Soc., 1983, 105, 7512. https://doi.org/10.1021/ja00364a005
19. Parr R., Donnelly R., LewyM., Palke W.: J. Chem. Phys., 1978, 68, 3801. https://doi.org/10.1063/1.436185
20. Pearson R.: Proc. Nats. Acad. Sci. USA, 1986, 83, 8440.
21. Chattaraj P., Sarkar R., Roy D.: Chem. Rev., 2006, 106, 2065. https://doi.org/10.1021/cr040109f
22. Parr R., von Szentpaly L., Liu S.: J. Am. Chem. Soc. 1999, 121, 1922. https://doi.org/10.1021/ja983494x
23. Kaya S., Kaya C.: Comput. Theor. Chem., 2015, 1052, 42. https://doi.org/10.1016/j.comptc.2014.11.017
24. HyperChemTM, Hypercube, Inc., 1994
25. Rosliza R. et al.: J. Appl. Electrochem., 2010, 40, 833. https://doi.org/10.1007/s10800-009-0066-1
26. FerreiraM., Varela H., Torresi R., Tremiliosi-Filho G.: Electrochim. Acta, 2006, 52, 434. https://doi.org/10.1016/j.electacta.2006.05.025
27. Lukovits I., Kálmán E., Zucchi F.: Corrosion. 2001, 57, 3. https://doi.org/10.5006/1.3290328
References (International): 1. Zhang D-Q., Gao L-X., Zhou G-D., Surf. Coat. Technol., 2010, 204, 1646. https://doi.org/10.1016/j.surfcoat.2009.10.054
2. Zhang D-Q., An Z-X., Pan Q-Y. et al., Corros. Sci., 2006, 48, 1437. https://doi.org/10.1016/j.corsci.2005.06.007
3. Sudheer A., Quraishi E., Eno E., NatesanM., Int. J. Electrochem. Sci., 2012, 7, 7463.
4. Quraishi M., Jamal D., Corrosion, 2002, 58, 5, 387. https://doi.org/10.5006/1.3277627
5. Montemor M., Act. Protect. Coat., 2016, 233, 107. https://doi.org/10.1007/978-94-017-7540-3_6
6. Chygyrynets’ E., Vorobyova V., Chem. Chem. Technol., 2014, 8, 235.
7. Vorob’iova V., Chyhyrynets’ O., Vasyl’kevych O.:Mater. Sci., 2015, 50, 726. https://doi.org/10.1007/s11003-015-9778-z
8. Chyhyrynets O.,Vorob'iova V.:Mater. Sci., 2013, 49, 318. https://doi.org/10.1007/s11003-013-9617-z
9. Poongothai N., Rajendran P., NatesanM. et al., Indian J. Chem. Technol., 2005, 12, 641.
10. Premkumar P., Kannan K., NatesanM., Asian J. Chem., 2008, 20, 445.
11. Premkumar P., Kannan K., NatesanM., J. Metall. Mater. Sci., 2008, 50, 227.
12. Li X., Deng S., Fu H., Xie X., Corros. Sci., 2014, 78, 29. https://doi.org/10.1016/j.corsci.2013.08.025
13. Leygraf C., Wallinder I.,Tidblad J., Graedel T., Atmospheric Corrosion. John Wiley & Sons, Inc., Hoboken 2016.
14. Kaya S., Tüzün B., Kaya C., Obot I., J. Taiwan Inst. Chem. Eng., 2016, 58, 528. https://doi.org/10.1016/j.jtice.2015.06.009
15. Gece G., Corros. Sci., 2008, 50, 11, 2981. https://doi.org/10.1016/j.jtice.2015.06.009
16. Koopmans T., Physica, 1934, 1, 104. https://doi.org/10.1016/S0031-8914(34)90011-2
17. Kovacevic N., Kokalj A., Corros. Sci., 2011, 53, 3, 909. https://doi.org/10.1016/j.corsci.2010.11.016
18. Parr R., Pearson R., J. Am. Chem. Soc., 1983, 105, 7512. https://doi.org/10.1021/ja00364a005
19. Parr R., Donnelly R., LewyM., Palke W., J. Chem. Phys., 1978, 68, 3801. https://doi.org/10.1063/1.436185
20. Pearson R., Proc. Nats. Acad. Sci. USA, 1986, 83, 8440.
21. Chattaraj P., Sarkar R., Roy D., Chem. Rev., 2006, 106, 2065. https://doi.org/10.1021/cr040109f
22. Parr R., von Szentpaly L., Liu S., J. Am. Chem. Soc. 1999, 121, 1922. https://doi.org/10.1021/ja983494x
23. Kaya S., Kaya C., Comput. Theor. Chem., 2015, 1052, 42. https://doi.org/10.1016/j.comptc.2014.11.017
24. HyperChemTM, Hypercube, Inc., 1994
25. Rosliza R. et al., J. Appl. Electrochem., 2010, 40, 833. https://doi.org/10.1007/s10800-009-0066-1
26. FerreiraM., Varela H., Torresi R., Tremiliosi-Filho G., Electrochim. Acta, 2006, 52, 434. https://doi.org/10.1016/j.electacta.2006.05.025
27. Lukovits I., Kálmán E., Zucchi F., Corrosion. 2001, 57, 3. https://doi.org/10.5006/1.3290328
Content type: Article
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 2

Files in This Item:
File Description SizeFormat 
2019v13n2_Vorobyova_V-Experimental_and_Theoretical_261-268.pdf530.59 kBAdobe PDFView/Open
2019v13n2_Vorobyova_V-Experimental_and_Theoretical_261-268__COVER.png534.83 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.