DC Field | Value | Language |
dc.contributor.author | Vorobyova, Victoria | |
dc.contributor.author | Chygyrynets’, Olena | |
dc.contributor.author | Skiba, Margarita | |
dc.contributor.author | Overchenko, Tatiana | |
dc.date.accessioned | 2020-03-02T12:28:10Z | - |
dc.date.available | 2020-03-02T12:28:10Z | - |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.identifier.citation | Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol / Victoria Vorobyova, Olena Chygyrynets’, Margarita Skiba, Tatiana Overchenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 261–268. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46467 | - |
dc.description.abstract | Тимол досліджено як новий леткий інгібітор
атмосферної корозії сталі. Для оцінки складу та
характеристики сформованих захисних шарів використовували
гравіметричні та електрохімічні дослідження, доповнені
спектральними FT-IR та мікроскопічними методами аналізу
SEM. Плівка, утворена на поверхні сталі з парогазової фази
тимолу, забезпечує ефект післядії на рівні 90% за періодичної
конденсації вологи впродовж 504 годин. Для оцінки
адсорбційної здатності тимолу проведені квантово-хімічні
розрахунки енергетичних параметрів молекули тимолу. | |
dc.description.abstract | The inhibition effect of thymol during the early
stage of steel corrosion under adsorbed thin electrolyte
layers was investigated. Its vapor corrosion inhibition
property was evaluated under simulated operational
conditions. Electrochemical techniques complemented by
FTIR and SEM surface analyses were used to evaluate the
composition and characteristics of the layers. The results
indicate that thymol can form a protective film on the
metal surface, which protects the metal against further
corrosion. Quantum chemical calculations studies were
also performed to support weight loss and electrochemical
experimental observations. | |
dc.format.extent | 261-268 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (13), 2019 | |
dc.relation.uri | https://doi.org/10.1016/j.surfcoat.2009.10.054 | |
dc.relation.uri | https://doi.org/10.1016/j.corsci.2005.06.007 | |
dc.relation.uri | https://doi.org/10.5006/1.3277627 | |
dc.relation.uri | https://doi.org/10.1007/978-94-017-7540-3_6 | |
dc.relation.uri | https://doi.org/10.1007/s11003-015-9778-z | |
dc.relation.uri | https://doi.org/10.1007/s11003-013-9617-z | |
dc.relation.uri | https://doi.org/10.1016/j.corsci.2013.08.025 | |
dc.relation.uri | https://doi.org/10.1016/j.jtice.2015.06.009 | |
dc.relation.uri | https://doi.org/10.1016/S0031-8914(34)90011-2 | |
dc.relation.uri | https://doi.org/10.1016/j.corsci.2010.11.016 | |
dc.relation.uri | https://doi.org/10.1021/ja00364a005 | |
dc.relation.uri | https://doi.org/10.1063/1.436185 | |
dc.relation.uri | https://doi.org/10.1021/cr040109f | |
dc.relation.uri | https://doi.org/10.1021/ja983494x | |
dc.relation.uri | https://doi.org/10.1016/j.comptc.2014.11.017 | |
dc.relation.uri | https://doi.org/10.1007/s10800-009-0066-1 | |
dc.relation.uri | https://doi.org/10.1016/j.electacta.2006.05.025 | |
dc.relation.uri | https://doi.org/10.5006/1.3290328 | |
dc.subject | атмосферна корозія | |
dc.subject | тимол | |
dc.subject | сталь | |
dc.subject | інгібітор корозії | |
dc.subject | квантово-хімічні розрахунки | |
dc.subject | atmospheric corrosion | |
dc.subject | thymol | |
dc.subject | steel | |
dc.subject | volatile inhibitor | |
dc.subject | quantum chemical calculations | |
dc.title | Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol | |
dc.title.alternative | Експериментальні та теоретичні дослідження протикорозійних властивостей тимолу | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.rights.holder | © Vorobyova V., Chygyrynets’ O., SkibaM., Overchenko T., 2019 | |
dc.contributor.affiliation | National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” | |
dc.contributor.affiliation | Ukrainian State Chemical-Engineering University | |
dc.format.pages | 8 | |
dc.identifier.citationen | Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol / Victoria Vorobyova, Olena Chygyrynets’, Margarita Skiba, Tatiana Overchenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 261–268. | |
dc.relation.references | 1. Zhang D-Q., Gao L-X., Zhou G-D.: Surf. Coat. Technol., 2010, 204, 1646. https://doi.org/10.1016/j.surfcoat.2009.10.054 | |
dc.relation.references | 2. Zhang D-Q., An Z-X., Pan Q-Y. et al.: Corros. Sci., 2006, 48, 1437. https://doi.org/10.1016/j.corsci.2005.06.007 | |
dc.relation.references | 3. Sudheer A., Quraishi E., Eno E., NatesanM.: Int. J. Electrochem. Sci., 2012, 7, 7463. | |
dc.relation.references | 4. Quraishi M., Jamal D.: Corrosion, 2002, 58, 5, 387. https://doi.org/10.5006/1.3277627 | |
dc.relation.references | 5. Montemor M.: Act. Protect. Coat., 2016, 233, 107. https://doi.org/10.1007/978-94-017-7540-3_6 | |
dc.relation.references | 6. Chygyrynets’ E., Vorobyova V.: Chem. Chem. Technol., 2014, 8, 235. | |
dc.relation.references | 7. Vorob’iova V., Chyhyrynets’ O., Vasyl’kevych O.:Mater. Sci., 2015, 50, 726. https://doi.org/10.1007/s11003-015-9778-z | |
dc.relation.references | 8. Chyhyrynets O.,Vorob'iova V.:Mater. Sci., 2013, 49, 318. https://doi.org/10.1007/s11003-013-9617-z | |
dc.relation.references | 9. Poongothai N., Rajendran P., NatesanM. et al.: Indian J. Chem. Technol., 2005, 12, 641. | |
dc.relation.references | 10. Premkumar P., Kannan K., NatesanM.: Asian J. Chem., 2008, 20, 445. | |
dc.relation.references | 11. Premkumar P., Kannan K., NatesanM.: J. Metall. Mater. Sci., 2008, 50, 227. | |
dc.relation.references | 12. Li X., Deng S., Fu H., Xie X.: Corros. Sci., 2014, 78, 29. https://doi.org/10.1016/j.corsci.2013.08.025 | |
dc.relation.references | 13. Leygraf C., Wallinder I.,Tidblad J., Graedel T.: Atmospheric Corrosion. John Wiley & Sons, Inc., Hoboken 2016. | |
dc.relation.references | 14. Kaya S., Tüzün B., Kaya C., Obot I.: J. Taiwan Inst. Chem. Eng., 2016, 58, 528. https://doi.org/10.1016/j.jtice.2015.06.009 | |
dc.relation.references | 15. Gece G.: Corros. Sci., 2008, 50, 11, 2981. https://doi.org/10.1016/j.jtice.2015.06.009 | |
dc.relation.references | 16. Koopmans T.: Physica, 1934, 1, 104. https://doi.org/10.1016/S0031-8914(34)90011-2 | |
dc.relation.references | 17. Kovacevic N., Kokalj A.: Corros. Sci., 2011, 53, 3, 909. https://doi.org/10.1016/j.corsci.2010.11.016 | |
dc.relation.references | 18. Parr R., Pearson R.: J. Am. Chem. Soc., 1983, 105, 7512. https://doi.org/10.1021/ja00364a005 | |
dc.relation.references | 19. Parr R., Donnelly R., LewyM., Palke W.: J. Chem. Phys., 1978, 68, 3801. https://doi.org/10.1063/1.436185 | |
dc.relation.references | 20. Pearson R.: Proc. Nats. Acad. Sci. USA, 1986, 83, 8440. | |
dc.relation.references | 21. Chattaraj P., Sarkar R., Roy D.: Chem. Rev., 2006, 106, 2065. https://doi.org/10.1021/cr040109f | |
dc.relation.references | 22. Parr R., von Szentpaly L., Liu S.: J. Am. Chem. Soc. 1999, 121, 1922. https://doi.org/10.1021/ja983494x | |
dc.relation.references | 23. Kaya S., Kaya C.: Comput. Theor. Chem., 2015, 1052, 42. https://doi.org/10.1016/j.comptc.2014.11.017 | |
dc.relation.references | 24. HyperChemTM, Hypercube, Inc., 1994 | |
dc.relation.references | 25. Rosliza R. et al.: J. Appl. Electrochem., 2010, 40, 833. https://doi.org/10.1007/s10800-009-0066-1 | |
dc.relation.references | 26. FerreiraM., Varela H., Torresi R., Tremiliosi-Filho G.: Electrochim. Acta, 2006, 52, 434. https://doi.org/10.1016/j.electacta.2006.05.025 | |
dc.relation.references | 27. Lukovits I., Kálmán E., Zucchi F.: Corrosion. 2001, 57, 3. https://doi.org/10.5006/1.3290328 | |
dc.relation.referencesen | 1. Zhang D-Q., Gao L-X., Zhou G-D., Surf. Coat. Technol., 2010, 204, 1646. https://doi.org/10.1016/j.surfcoat.2009.10.054 | |
dc.relation.referencesen | 2. Zhang D-Q., An Z-X., Pan Q-Y. et al., Corros. Sci., 2006, 48, 1437. https://doi.org/10.1016/j.corsci.2005.06.007 | |
dc.relation.referencesen | 3. Sudheer A., Quraishi E., Eno E., NatesanM., Int. J. Electrochem. Sci., 2012, 7, 7463. | |
dc.relation.referencesen | 4. Quraishi M., Jamal D., Corrosion, 2002, 58, 5, 387. https://doi.org/10.5006/1.3277627 | |
dc.relation.referencesen | 5. Montemor M., Act. Protect. Coat., 2016, 233, 107. https://doi.org/10.1007/978-94-017-7540-3_6 | |
dc.relation.referencesen | 6. Chygyrynets’ E., Vorobyova V., Chem. Chem. Technol., 2014, 8, 235. | |
dc.relation.referencesen | 7. Vorob’iova V., Chyhyrynets’ O., Vasyl’kevych O.:Mater. Sci., 2015, 50, 726. https://doi.org/10.1007/s11003-015-9778-z | |
dc.relation.referencesen | 8. Chyhyrynets O.,Vorob'iova V.:Mater. Sci., 2013, 49, 318. https://doi.org/10.1007/s11003-013-9617-z | |
dc.relation.referencesen | 9. Poongothai N., Rajendran P., NatesanM. et al., Indian J. Chem. Technol., 2005, 12, 641. | |
dc.relation.referencesen | 10. Premkumar P., Kannan K., NatesanM., Asian J. Chem., 2008, 20, 445. | |
dc.relation.referencesen | 11. Premkumar P., Kannan K., NatesanM., J. Metall. Mater. Sci., 2008, 50, 227. | |
dc.relation.referencesen | 12. Li X., Deng S., Fu H., Xie X., Corros. Sci., 2014, 78, 29. https://doi.org/10.1016/j.corsci.2013.08.025 | |
dc.relation.referencesen | 13. Leygraf C., Wallinder I.,Tidblad J., Graedel T., Atmospheric Corrosion. John Wiley & Sons, Inc., Hoboken 2016. | |
dc.relation.referencesen | 14. Kaya S., Tüzün B., Kaya C., Obot I., J. Taiwan Inst. Chem. Eng., 2016, 58, 528. https://doi.org/10.1016/j.jtice.2015.06.009 | |
dc.relation.referencesen | 15. Gece G., Corros. Sci., 2008, 50, 11, 2981. https://doi.org/10.1016/j.jtice.2015.06.009 | |
dc.relation.referencesen | 16. Koopmans T., Physica, 1934, 1, 104. https://doi.org/10.1016/S0031-8914(34)90011-2 | |
dc.relation.referencesen | 17. Kovacevic N., Kokalj A., Corros. Sci., 2011, 53, 3, 909. https://doi.org/10.1016/j.corsci.2010.11.016 | |
dc.relation.referencesen | 18. Parr R., Pearson R., J. Am. Chem. Soc., 1983, 105, 7512. https://doi.org/10.1021/ja00364a005 | |
dc.relation.referencesen | 19. Parr R., Donnelly R., LewyM., Palke W., J. Chem. Phys., 1978, 68, 3801. https://doi.org/10.1063/1.436185 | |
dc.relation.referencesen | 20. Pearson R., Proc. Nats. Acad. Sci. USA, 1986, 83, 8440. | |
dc.relation.referencesen | 21. Chattaraj P., Sarkar R., Roy D., Chem. Rev., 2006, 106, 2065. https://doi.org/10.1021/cr040109f | |
dc.relation.referencesen | 22. Parr R., von Szentpaly L., Liu S., J. Am. Chem. Soc. 1999, 121, 1922. https://doi.org/10.1021/ja983494x | |
dc.relation.referencesen | 23. Kaya S., Kaya C., Comput. Theor. Chem., 2015, 1052, 42. https://doi.org/10.1016/j.comptc.2014.11.017 | |
dc.relation.referencesen | 24. HyperChemTM, Hypercube, Inc., 1994 | |
dc.relation.referencesen | 25. Rosliza R. et al., J. Appl. Electrochem., 2010, 40, 833. https://doi.org/10.1007/s10800-009-0066-1 | |
dc.relation.referencesen | 26. FerreiraM., Varela H., Torresi R., Tremiliosi-Filho G., Electrochim. Acta, 2006, 52, 434. https://doi.org/10.1016/j.electacta.2006.05.025 | |
dc.relation.referencesen | 27. Lukovits I., Kálmán E., Zucchi F., Corrosion. 2001, 57, 3. https://doi.org/10.5006/1.3290328 | |
dc.citation.issue | 2 | |
dc.citation.spage | 261 | |
dc.citation.epage | 268 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 2
|