https://oldena.lpnu.ua/handle/ntb/46461
Title: | Synthesis and Characterization of Mixed Al,Cu-Pillared and Copper Doped Al-Pillared Bentonite |
Other Titles: | Синтез та характеристика суміші Al,Cu-зшитого і промотованого міддю бентоніту |
Authors: | Ravari, Maryam Hamidi Sarrafi, Amir Tahmooresi, Majid |
Affiliation: | Shahid Bahonar University of Kerman International Center of High Technology & Environmental Science |
Bibliographic description (Ukraine): | Ravari M. H. Synthesis and Characterization of Mixed Al,Cu-Pillared and Copper Doped Al-Pillared Bentonite / Maryam Hamidi Ravari, Amir Sarrafi, Majid Tahmooresi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 231–235. |
Bibliographic description (International): | Ravari M. H. Synthesis and Characterization of Mixed Al,Cu-Pillared and Copper Doped Al-Pillared Bentonite / Maryam Hamidi Ravari, Amir Sarrafi, Majid Tahmooresi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 231–235. |
Is part of: | Chemistry & Chemical Technology, 2 (13), 2019 |
Issue: | 2 |
Issue Date: | 28-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | алюміній бентоніт мідь зшиті глини aluminum bentonite copper pillared clays |
Number of pages: | 5 |
Page range: | 231-235 |
Start page: | 231 |
End page: | 235 |
Abstract: | З використанням зразка бентоніту одер-
жано суміші глин, зшитих алюмінієм та міддю (Al, Cu-PILCs) з
різним відсотком Cu та імпрегнованих алюмінієм (Cu@Al-
PILC). Характеристику зразків проведено за допомогою
рентгенівської дифракції, адсорбції-десорбції N2 та Фур‘є-
спектроскопії. Визначено, що площа поверхні за БЕТ, загальна
площа та об‘єм мікропор Al-PILC зменшуються в Cu@Al-
PILC, проте збільшуються у випадку змішаних металів і
досягають максимуму для Al, Cu-PILCs. Встановлено, що
найвищий вміст міді є в Cu@Al-PILC, тому його каталітичні
властивості покращуються. Фур‘є-спектроскопією підтверд-
жено введення міді в структуру Al, Cu-PILCs. In this paper, mixed aluminum and copper pillared clays (Al,Cu-PILCs) with different percentage of Cu and copper impregnated aluminum pillared clay (Cu@Al-PILC) were prepared using a bentonite sample. The samples were characterized by X-ray diffraction, N2 adsorption-desorption and Fourier transformed infrared spectroscopy. The results showed bentonite had a main reflection of montmorillonite that characterized by basal spacing, increased by pillaring. The specific BET surface area, total surface area and micropore volume of Al-PILC decreased in Cu@Al-PILC but increased in the case of mixed metal pillars and the maximum of these parameters related to Al,Cu15-PILC. Maximum weight percentage of copper was in Cu@Al-PILC therefore it contained higher percent of copper and its catalytic properties increased. FTIR result of samples confirmed the successful intercalation of Cu. |
URI: | https://ena.lpnu.ua/handle/ntb/46461 |
Copyright owner: | © Національний університет „Львівська політехніка“, 2019 © Hamidi RavariM., Sarrafi A., Tahmooresi M., 2019 |
URL for reference material: | https://doi.org/10.1016/j.apcata.2011.11.023 https://doi.org/10.1016/j.cattod.2007.12.112 https://doi.org/10.1016/S1002-0721(10)60393-6 https://doi.org/10.1016/S0169-1317(01)00069-2 https://doi.org/10.1016/j.cej.2009.05.004 https://doi.org/10.1016/S0920-5861(01)00320-0 https://doi.org/10.1080/01614940.2014.904182 https://doi.org/10.1016/j.clay.2010.07.004 https://doi.org/10.1016/j.molstruc.2015.10.072 https://doi.org/10.1016/j.clay.2010.04.012 https://doi.org/10.1016/j.crci.2015.08.004 https://doi.org/10.1016/j.cattod.2007.03.041 https://doi.org/10.1016/S0926-3373(98)00083-6 https://doi.org/10.1016/j.micromeso.2007.05.011 https://doi.org/10.1016/j.ccr.2012.03.010 https://doi.org/10.1007/978-1-4020-2303-3_9 https://doi.org/10.1016/0021-9517(65)90307-6 https://doi.org/10.1016/j.jiec.2012.11.018 https://doi.org/10.4236/jsemat.2013.34037 |
References (Ukraine): | 1. Bergaya F., Theng B., Lagaly G.: Handbook of Clay Science. Elsevier 2006. 2. Ayodele O., Lim J., Hameed B.: Appl. Catal. A-Gen., 2012, 413, 301. https://doi.org/10.1016/j.apcata.2011.11.023 3. Britto J., Oliveira S., Rabelo D., Rangel M.: Catal. Today, 2008, 133, 582. https://doi.org/10.1016/j.cattod.2007.12.112 4. Zuo S., Zhou R., Qi Ch.: J. Rare Earths, 2011, 29, 52. https://doi.org/10.1016/S1002-0721(10)60393-6 5. Kloprogge J., Evans R., Hickey L., Frost L.: Appl. Clay Sci., 2002, 20, 157. https://doi.org/10.1016/S0169-1317(01)00069-2 6. Mishra T.: TransitionMetal Oxide-Pillared Clay Catalyst: Synthesis to Application [in:] Gil A. et al. (Eds.): Pillared Clays and Related Catalysts. Springer Science+BusinessMedia 2010. 7. Mojovic Z., Bankovic P., Milutinovic-Nikolis A. et al.: Chem. Eng. J., 2009, 154, 149. https://doi.org/10.1016/j.cej.2009.05.004 8. Pires J., PintoM.: Pillared Interlayered Clays as Adsorbents of Gases and [in:] Gil A. et al. (Eds.): Pillared Clays and Related Catalysts. Springer Science+BusinessMedia 2010. 9. Chae H., Nam I., Ham S., Hong S.: Catal. Today, 2001, 68, 31. https://doi.org/10.1016/S0920-5861(01)00320-0 10. Alejandro Galeano L., Angel VicenteM., Gil A.: Catal. Rev., 2014, 56, 239. https://doi.org/10.1080/01614940.2014.904182 11. Turgut Basoglu F., Balci S.: Appl. Clay Sci., 2010, 50, 73. https://doi.org/10.1016/j.clay.2010.07.004 12. Turgut Basoglu F., Balci S.: J. Mol. Struct., 2016, 1106, 382. https://doi.org/10.1016/j.molstruc.2015.10.072 13. Bankovic P., Mojovic Z., Milutinovic-Nikolis A. et al.: Appl. Clay Sci., 2010, 49, 84. https://doi.org/10.1016/j.clay.2010.04.012 14. Hadjltaief H., ZinaM., GalvesM., Costa P.: Comptes Rendus Chimie, 2015, 18, 1161. https://doi.org/10.1016/j.crci.2015.08.004 15. Abeysinghe S.: Keggin-type aluminum nanoclusters: synthesis, structural characterization and environmental implications. MS thesis, University of Iowa, 2012. 16. Giordano G., Perathoner S., Centi G. et al.: Catal. Today, 2007, 124, 240. https://doi.org/10.1016/j.cattod.2007.03.041 17. Yang R., Tharappiwattananon N., Long R.: Appl. Catal. BEnviron., 1998, 19, 289. https://doi.org/10.1016/S0926-3373(98)00083-6 18. Caudo S., Genovese Ch., Perathoner S., Centi G.:Micropor. Mesopor. Mater., 2008, 107, 46. https://doi.org/10.1016/j.micromeso.2007.05.011 19. Windle C., Perutz R.: Adv. Chem. Rev., 2012, 256, 2562. https://doi.org/10.1016/j.ccr.2012.03.010 20. Lowell S., Shields J., ThomasM., ThommesM.:Micropore Analysis. [in:] Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Particle Technology Series, vol 16. Springer, Dordrecht 2004, 129-156. https://doi.org/10.1007/978-1-4020-2303-3_9 21. Jasinska I.: Particle size pore structure of nanomaterial. PhD thesis, West Pomeranian University of Technology 2011. 22. Lippens B., Deboer J.: J. Catal., 1995, 4, 319. https://doi.org/10.1016/0021-9517(65)90307-6 23. Ayodele O., Hameed B.: J. Ind. Eng. Chem., 2013, 19, 966. https://doi.org/10.1016/j.jiec.2012.11.018 24. Djomgoue P., NjopwouoD.: J. Surf. Eng. Mat. Adv. Technol., 2013, 3, 275. https://doi.org/10.4236/jsemat.2013.34037 25. Tomul F., Balci S.: J. Sci., 2007, 21, 21. 26. Regnier P., Lasaga A.C., Berner R. et al.: Am. Mineralogist, 1994, 79, 809. 27. HariharanM., Varghese N., Benny Cherian A. et al.: Int. J. Sci. Res. Publ., 2014, 4(10), 1. |
References (International): | 1. Bergaya F., Theng B., Lagaly G., Handbook of Clay Science. Elsevier 2006. 2. Ayodele O., Lim J., Hameed B., Appl. Catal. A-Gen., 2012, 413, 301. https://doi.org/10.1016/j.apcata.2011.11.023 3. Britto J., Oliveira S., Rabelo D., Rangel M., Catal. Today, 2008, 133, 582. https://doi.org/10.1016/j.cattod.2007.12.112 4. Zuo S., Zhou R., Qi Ch., J. Rare Earths, 2011, 29, 52. https://doi.org/10.1016/S1002-0721(10)60393-6 5. Kloprogge J., Evans R., Hickey L., Frost L., Appl. Clay Sci., 2002, 20, 157. https://doi.org/10.1016/S0169-1317(01)00069-2 6. Mishra T., TransitionMetal Oxide-Pillared Clay Catalyst: Synthesis to Application [in:] Gil A. et al. (Eds.): Pillared Clays and Related Catalysts. Springer Science+BusinessMedia 2010. 7. Mojovic Z., Bankovic P., Milutinovic-Nikolis A. et al., Chem. Eng. J., 2009, 154, 149. https://doi.org/10.1016/j.cej.2009.05.004 8. Pires J., PintoM., Pillared Interlayered Clays as Adsorbents of Gases and [in:] Gil A. et al. (Eds.): Pillared Clays and Related Catalysts. Springer Science+BusinessMedia 2010. 9. Chae H., Nam I., Ham S., Hong S., Catal. Today, 2001, 68, 31. https://doi.org/10.1016/S0920-5861(01)00320-0 10. Alejandro Galeano L., Angel VicenteM., Gil A., Catal. Rev., 2014, 56, 239. https://doi.org/10.1080/01614940.2014.904182 11. Turgut Basoglu F., Balci S., Appl. Clay Sci., 2010, 50, 73. https://doi.org/10.1016/j.clay.2010.07.004 12. Turgut Basoglu F., Balci S., J. Mol. Struct., 2016, 1106, 382. https://doi.org/10.1016/j.molstruc.2015.10.072 13. Bankovic P., Mojovic Z., Milutinovic-Nikolis A. et al., Appl. Clay Sci., 2010, 49, 84. https://doi.org/10.1016/j.clay.2010.04.012 14. Hadjltaief H., ZinaM., GalvesM., Costa P., Comptes Rendus Chimie, 2015, 18, 1161. https://doi.org/10.1016/j.crci.2015.08.004 15. Abeysinghe S., Keggin-type aluminum nanoclusters: synthesis, structural characterization and environmental implications. MS thesis, University of Iowa, 2012. 16. Giordano G., Perathoner S., Centi G. et al., Catal. Today, 2007, 124, 240. https://doi.org/10.1016/j.cattod.2007.03.041 17. Yang R., Tharappiwattananon N., Long R., Appl. Catal. BEnviron., 1998, 19, 289. https://doi.org/10.1016/S0926-3373(98)00083-6 18. Caudo S., Genovese Ch., Perathoner S., Centi G.:Micropor. Mesopor. Mater., 2008, 107, 46. https://doi.org/10.1016/j.micromeso.2007.05.011 19. Windle C., Perutz R., Adv. Chem. Rev., 2012, 256, 2562. https://doi.org/10.1016/j.ccr.2012.03.010 20. Lowell S., Shields J., ThomasM., ThommesM.:Micropore Analysis. [in:] Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Particle Technology Series, vol 16. Springer, Dordrecht 2004, 129-156. https://doi.org/10.1007/978-1-4020-2303-3_9 21. Jasinska I., Particle size pore structure of nanomaterial. PhD thesis, West Pomeranian University of Technology 2011. 22. Lippens B., Deboer J., J. Catal., 1995, 4, 319. https://doi.org/10.1016/0021-9517(65)90307-6 23. Ayodele O., Hameed B., J. Ind. Eng. Chem., 2013, 19, 966. https://doi.org/10.1016/j.jiec.2012.11.018 24. Djomgoue P., NjopwouoD., J. Surf. Eng. Mat. Adv. Technol., 2013, 3, 275. https://doi.org/10.4236/jsemat.2013.34037 25. Tomul F., Balci S., J. Sci., 2007, 21, 21. 26. Regnier P., Lasaga A.C., Berner R. et al., Am. Mineralogist, 1994, 79, 809. 27. HariharanM., Varghese N., Benny Cherian A. et al., Int. J. Sci. Res. Publ., 2014, 4(10), 1. |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 2 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v13n2_Ravari_M_H-Synthesis_and_Characterization_231-235.pdf | 282.7 kB | Adobe PDF | View/Open | |
2019v13n2_Ravari_M_H-Synthesis_and_Characterization_231-235__COVER.png | 533.38 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.