DC Field | Value | Language |
dc.contributor.author | Ravari, Maryam Hamidi | |
dc.contributor.author | Sarrafi, Amir | |
dc.contributor.author | Tahmooresi, Majid | |
dc.date.accessioned | 2020-03-02T12:28:07Z | - |
dc.date.available | 2020-03-02T12:28:07Z | - |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.identifier.citation | Ravari M. H. Synthesis and Characterization of Mixed Al,Cu-Pillared and Copper Doped Al-Pillared Bentonite / Maryam Hamidi Ravari, Amir Sarrafi, Majid Tahmooresi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 231–235. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46461 | - |
dc.description.abstract | З використанням зразка бентоніту одер-
жано суміші глин, зшитих алюмінієм та міддю (Al, Cu-PILCs) з
різним відсотком Cu та імпрегнованих алюмінієм (Cu@Al-
PILC). Характеристику зразків проведено за допомогою
рентгенівської дифракції, адсорбції-десорбції N2 та Фур‘є-
спектроскопії. Визначено, що площа поверхні за БЕТ, загальна
площа та об‘єм мікропор Al-PILC зменшуються в Cu@Al-
PILC, проте збільшуються у випадку змішаних металів і
досягають максимуму для Al, Cu-PILCs. Встановлено, що
найвищий вміст міді є в Cu@Al-PILC, тому його каталітичні
властивості покращуються. Фур‘є-спектроскопією підтверд-
жено введення міді в структуру Al, Cu-PILCs. | |
dc.description.abstract | In this paper, mixed aluminum and copper
pillared clays (Al,Cu-PILCs) with different percentage of
Cu and copper impregnated aluminum pillared clay
(Cu@Al-PILC) were prepared using a bentonite sample.
The samples were characterized by X-ray diffraction, N2
adsorption-desorption and Fourier transformed infrared
spectroscopy. The results showed bentonite had a main
reflection of montmorillonite that characterized by
basal spacing, increased by pillaring. The specific BET
surface area, total surface area and micropore volume of
Al-PILC decreased in Cu@Al-PILC but increased in the
case of mixed metal pillars and the maximum of these
parameters related to Al,Cu15-PILC. Maximum weight
percentage of copper was in Cu@Al-PILC therefore it
contained higher percent of copper and its catalytic
properties increased. FTIR result of samples confirmed
the successful intercalation of Cu. | |
dc.format.extent | 231-235 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (13), 2019 | |
dc.relation.uri | https://doi.org/10.1016/j.apcata.2011.11.023 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2007.12.112 | |
dc.relation.uri | https://doi.org/10.1016/S1002-0721(10)60393-6 | |
dc.relation.uri | https://doi.org/10.1016/S0169-1317(01)00069-2 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2009.05.004 | |
dc.relation.uri | https://doi.org/10.1016/S0920-5861(01)00320-0 | |
dc.relation.uri | https://doi.org/10.1080/01614940.2014.904182 | |
dc.relation.uri | https://doi.org/10.1016/j.clay.2010.07.004 | |
dc.relation.uri | https://doi.org/10.1016/j.molstruc.2015.10.072 | |
dc.relation.uri | https://doi.org/10.1016/j.clay.2010.04.012 | |
dc.relation.uri | https://doi.org/10.1016/j.crci.2015.08.004 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2007.03.041 | |
dc.relation.uri | https://doi.org/10.1016/S0926-3373(98)00083-6 | |
dc.relation.uri | https://doi.org/10.1016/j.micromeso.2007.05.011 | |
dc.relation.uri | https://doi.org/10.1016/j.ccr.2012.03.010 | |
dc.relation.uri | https://doi.org/10.1007/978-1-4020-2303-3_9 | |
dc.relation.uri | https://doi.org/10.1016/0021-9517(65)90307-6 | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2012.11.018 | |
dc.relation.uri | https://doi.org/10.4236/jsemat.2013.34037 | |
dc.subject | алюміній | |
dc.subject | бентоніт | |
dc.subject | мідь | |
dc.subject | зшиті глини | |
dc.subject | aluminum | |
dc.subject | bentonite | |
dc.subject | copper | |
dc.subject | pillared clays | |
dc.title | Synthesis and Characterization of Mixed Al,Cu-Pillared and Copper Doped Al-Pillared Bentonite | |
dc.title.alternative | Синтез та характеристика суміші Al,Cu-зшитого і промотованого міддю бентоніту | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.rights.holder | © Hamidi RavariM., Sarrafi A., Tahmooresi M., 2019 | |
dc.contributor.affiliation | Shahid Bahonar University of Kerman | |
dc.contributor.affiliation | International Center of High Technology & Environmental Science | |
dc.format.pages | 5 | |
dc.identifier.citationen | Ravari M. H. Synthesis and Characterization of Mixed Al,Cu-Pillared and Copper Doped Al-Pillared Bentonite / Maryam Hamidi Ravari, Amir Sarrafi, Majid Tahmooresi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 231–235. | |
dc.relation.references | 1. Bergaya F., Theng B., Lagaly G.: Handbook of Clay Science. Elsevier 2006. | |
dc.relation.references | 2. Ayodele O., Lim J., Hameed B.: Appl. Catal. A-Gen., 2012, 413, 301. https://doi.org/10.1016/j.apcata.2011.11.023 | |
dc.relation.references | 3. Britto J., Oliveira S., Rabelo D., Rangel M.: Catal. Today, 2008, 133, 582. https://doi.org/10.1016/j.cattod.2007.12.112 | |
dc.relation.references | 4. Zuo S., Zhou R., Qi Ch.: J. Rare Earths, 2011, 29, 52. https://doi.org/10.1016/S1002-0721(10)60393-6 | |
dc.relation.references | 5. Kloprogge J., Evans R., Hickey L., Frost L.: Appl. Clay Sci., 2002, 20, 157. https://doi.org/10.1016/S0169-1317(01)00069-2 | |
dc.relation.references | 6. Mishra T.: TransitionMetal Oxide-Pillared Clay Catalyst: Synthesis to Application [in:] Gil A. et al. (Eds.): Pillared Clays and Related Catalysts. Springer Science+BusinessMedia 2010. | |
dc.relation.references | 7. Mojovic Z., Bankovic P., Milutinovic-Nikolis A. et al.: Chem. Eng. J., 2009, 154, 149. https://doi.org/10.1016/j.cej.2009.05.004 | |
dc.relation.references | 8. Pires J., PintoM.: Pillared Interlayered Clays as Adsorbents of Gases and [in:] Gil A. et al. (Eds.): Pillared Clays and Related Catalysts. Springer Science+BusinessMedia 2010. | |
dc.relation.references | 9. Chae H., Nam I., Ham S., Hong S.: Catal. Today, 2001, 68, 31. https://doi.org/10.1016/S0920-5861(01)00320-0 | |
dc.relation.references | 10. Alejandro Galeano L., Angel VicenteM., Gil A.: Catal. Rev., 2014, 56, 239. https://doi.org/10.1080/01614940.2014.904182 | |
dc.relation.references | 11. Turgut Basoglu F., Balci S.: Appl. Clay Sci., 2010, 50, 73. https://doi.org/10.1016/j.clay.2010.07.004 | |
dc.relation.references | 12. Turgut Basoglu F., Balci S.: J. Mol. Struct., 2016, 1106, 382. https://doi.org/10.1016/j.molstruc.2015.10.072 | |
dc.relation.references | 13. Bankovic P., Mojovic Z., Milutinovic-Nikolis A. et al.: Appl. Clay Sci., 2010, 49, 84. https://doi.org/10.1016/j.clay.2010.04.012 | |
dc.relation.references | 14. Hadjltaief H., ZinaM., GalvesM., Costa P.: Comptes Rendus Chimie, 2015, 18, 1161. https://doi.org/10.1016/j.crci.2015.08.004 | |
dc.relation.references | 15. Abeysinghe S.: Keggin-type aluminum nanoclusters: synthesis, structural characterization and environmental implications. MS thesis, University of Iowa, 2012. | |
dc.relation.references | 16. Giordano G., Perathoner S., Centi G. et al.: Catal. Today, 2007, 124, 240. https://doi.org/10.1016/j.cattod.2007.03.041 | |
dc.relation.references | 17. Yang R., Tharappiwattananon N., Long R.: Appl. Catal. BEnviron., 1998, 19, 289. https://doi.org/10.1016/S0926-3373(98)00083-6 | |
dc.relation.references | 18. Caudo S., Genovese Ch., Perathoner S., Centi G.:Micropor. Mesopor. Mater., 2008, 107, 46. https://doi.org/10.1016/j.micromeso.2007.05.011 | |
dc.relation.references | 19. Windle C., Perutz R.: Adv. Chem. Rev., 2012, 256, 2562. https://doi.org/10.1016/j.ccr.2012.03.010 | |
dc.relation.references | 20. Lowell S., Shields J., ThomasM., ThommesM.:Micropore Analysis. [in:] Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Particle Technology Series, vol 16. Springer, Dordrecht 2004, 129-156. https://doi.org/10.1007/978-1-4020-2303-3_9 | |
dc.relation.references | 21. Jasinska I.: Particle size pore structure of nanomaterial. PhD thesis, West Pomeranian University of Technology 2011. | |
dc.relation.references | 22. Lippens B., Deboer J.: J. Catal., 1995, 4, 319. https://doi.org/10.1016/0021-9517(65)90307-6 | |
dc.relation.references | 23. Ayodele O., Hameed B.: J. Ind. Eng. Chem., 2013, 19, 966. https://doi.org/10.1016/j.jiec.2012.11.018 | |
dc.relation.references | 24. Djomgoue P., NjopwouoD.: J. Surf. Eng. Mat. Adv. Technol., 2013, 3, 275. https://doi.org/10.4236/jsemat.2013.34037 | |
dc.relation.references | 25. Tomul F., Balci S.: J. Sci., 2007, 21, 21. | |
dc.relation.references | 26. Regnier P., Lasaga A.C., Berner R. et al.: Am. Mineralogist, 1994, 79, 809. | |
dc.relation.references | 27. HariharanM., Varghese N., Benny Cherian A. et al.: Int. J. Sci. Res. Publ., 2014, 4(10), 1. | |
dc.relation.referencesen | 1. Bergaya F., Theng B., Lagaly G., Handbook of Clay Science. Elsevier 2006. | |
dc.relation.referencesen | 2. Ayodele O., Lim J., Hameed B., Appl. Catal. A-Gen., 2012, 413, 301. https://doi.org/10.1016/j.apcata.2011.11.023 | |
dc.relation.referencesen | 3. Britto J., Oliveira S., Rabelo D., Rangel M., Catal. Today, 2008, 133, 582. https://doi.org/10.1016/j.cattod.2007.12.112 | |
dc.relation.referencesen | 4. Zuo S., Zhou R., Qi Ch., J. Rare Earths, 2011, 29, 52. https://doi.org/10.1016/S1002-0721(10)60393-6 | |
dc.relation.referencesen | 5. Kloprogge J., Evans R., Hickey L., Frost L., Appl. Clay Sci., 2002, 20, 157. https://doi.org/10.1016/S0169-1317(01)00069-2 | |
dc.relation.referencesen | 6. Mishra T., TransitionMetal Oxide-Pillared Clay Catalyst: Synthesis to Application [in:] Gil A. et al. (Eds.): Pillared Clays and Related Catalysts. Springer Science+BusinessMedia 2010. | |
dc.relation.referencesen | 7. Mojovic Z., Bankovic P., Milutinovic-Nikolis A. et al., Chem. Eng. J., 2009, 154, 149. https://doi.org/10.1016/j.cej.2009.05.004 | |
dc.relation.referencesen | 8. Pires J., PintoM., Pillared Interlayered Clays as Adsorbents of Gases and [in:] Gil A. et al. (Eds.): Pillared Clays and Related Catalysts. Springer Science+BusinessMedia 2010. | |
dc.relation.referencesen | 9. Chae H., Nam I., Ham S., Hong S., Catal. Today, 2001, 68, 31. https://doi.org/10.1016/S0920-5861(01)00320-0 | |
dc.relation.referencesen | 10. Alejandro Galeano L., Angel VicenteM., Gil A., Catal. Rev., 2014, 56, 239. https://doi.org/10.1080/01614940.2014.904182 | |
dc.relation.referencesen | 11. Turgut Basoglu F., Balci S., Appl. Clay Sci., 2010, 50, 73. https://doi.org/10.1016/j.clay.2010.07.004 | |
dc.relation.referencesen | 12. Turgut Basoglu F., Balci S., J. Mol. Struct., 2016, 1106, 382. https://doi.org/10.1016/j.molstruc.2015.10.072 | |
dc.relation.referencesen | 13. Bankovic P., Mojovic Z., Milutinovic-Nikolis A. et al., Appl. Clay Sci., 2010, 49, 84. https://doi.org/10.1016/j.clay.2010.04.012 | |
dc.relation.referencesen | 14. Hadjltaief H., ZinaM., GalvesM., Costa P., Comptes Rendus Chimie, 2015, 18, 1161. https://doi.org/10.1016/j.crci.2015.08.004 | |
dc.relation.referencesen | 15. Abeysinghe S., Keggin-type aluminum nanoclusters: synthesis, structural characterization and environmental implications. MS thesis, University of Iowa, 2012. | |
dc.relation.referencesen | 16. Giordano G., Perathoner S., Centi G. et al., Catal. Today, 2007, 124, 240. https://doi.org/10.1016/j.cattod.2007.03.041 | |
dc.relation.referencesen | 17. Yang R., Tharappiwattananon N., Long R., Appl. Catal. BEnviron., 1998, 19, 289. https://doi.org/10.1016/S0926-3373(98)00083-6 | |
dc.relation.referencesen | 18. Caudo S., Genovese Ch., Perathoner S., Centi G.:Micropor. Mesopor. Mater., 2008, 107, 46. https://doi.org/10.1016/j.micromeso.2007.05.011 | |
dc.relation.referencesen | 19. Windle C., Perutz R., Adv. Chem. Rev., 2012, 256, 2562. https://doi.org/10.1016/j.ccr.2012.03.010 | |
dc.relation.referencesen | 20. Lowell S., Shields J., ThomasM., ThommesM.:Micropore Analysis. [in:] Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Particle Technology Series, vol 16. Springer, Dordrecht 2004, 129-156. https://doi.org/10.1007/978-1-4020-2303-3_9 | |
dc.relation.referencesen | 21. Jasinska I., Particle size pore structure of nanomaterial. PhD thesis, West Pomeranian University of Technology 2011. | |
dc.relation.referencesen | 22. Lippens B., Deboer J., J. Catal., 1995, 4, 319. https://doi.org/10.1016/0021-9517(65)90307-6 | |
dc.relation.referencesen | 23. Ayodele O., Hameed B., J. Ind. Eng. Chem., 2013, 19, 966. https://doi.org/10.1016/j.jiec.2012.11.018 | |
dc.relation.referencesen | 24. Djomgoue P., NjopwouoD., J. Surf. Eng. Mat. Adv. Technol., 2013, 3, 275. https://doi.org/10.4236/jsemat.2013.34037 | |
dc.relation.referencesen | 25. Tomul F., Balci S., J. Sci., 2007, 21, 21. | |
dc.relation.referencesen | 26. Regnier P., Lasaga A.C., Berner R. et al., Am. Mineralogist, 1994, 79, 809. | |
dc.relation.referencesen | 27. HariharanM., Varghese N., Benny Cherian A. et al., Int. J. Sci. Res. Publ., 2014, 4(10), 1. | |
dc.citation.issue | 2 | |
dc.citation.spage | 231 | |
dc.citation.epage | 235 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 2
|