Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46455
Title: Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents
Other Titles: Дослідження ізотерм Фрейндліха, Ленгмюра, Темкіна та Гаркінса-Юри при адсорбції H2 на пористих адсорбентах
Authors: Erdogan, Fatma Oguz
Affiliation: Kocaeli University
Bibliographic description (Ukraine): Erdogan F. O. Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents / Fatma Oguz Erdogan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 129–135.
Bibliographic description (International): Erdogan F. O. Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents / Fatma Oguz Erdogan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 129–135.
Is part of: Chemistry & Chemical Technology, 2 (13), 2019
Issue: 2
Issue Date: 28-Feb-2019
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
Keywords: адсорбційна здатність водню
багатошарова карбонова нанотрубка
цеоліт
MCM-41
композит залізо/багатошарова карбонова нанотрубка
hydrogen adsorption capacity
multiwalled carbon nanotube
zeolite
MCM-41
iron multiwalled carbon nanotube composite
Number of pages: 7
Page range: 129-135
Start page: 129
End page: 135
Abstract: Вивчено ізотерми адсорбції та десорбції водню для багатошарової карбонової нанотрубки (MWCNT), багатошарової карбонової нанотрубки модифікованої залізом (Fe_MWCNT), двох цеолітів (Na_Y_Zeo і NH4-Y_Zeo) та MCM- 41 за температури 77 К і атмосферного тиску. Адсорбційні характеристики оцінено декількома ізотермічними рів- няннями, такими як моделі Ленгмюра, Фрейндліха, Темкіна та Гаркінса-Юри. Визначено, що ізотерма Фрейндліха найбільш повно описує процес, оскільки має найвищу кореляцію. Вста- новлено, що масова кількість адсорбованого водню залежить від об'єму мікропори зразка, крім MWCNT та Fe_MWCNT. Характеристику пористих зразків визначено за допомогою скануючої електронної мікроскопії та ізотерм адсорбції N2.Визначено, що максимальний запас водню 1,96 мас. % досягається за 77 К при використанні Fe_MWCNT. Мікро- пористий Na_Y_Zeo та NH4_Y_Zeo виявляють більшу адсорбційну здатність водню, ніж мезопористий MCM-41. Показана можливість покращення адсорбційні властивостей цих пористих адсорбентів щодо водню внаслідок введення інших металів.
The hydrogen adsorption and desorption isotherms of multiwalled carbon nanotube sample (MWCNT), an iron loaded multiwalled carbon nanotube (Fe_MWCNT), two zeolites (Na_Y_Zeo and NH4_Y_Zeo) and MCM-41 were measured at 77 K and atmospheric pressure by using the volumetric adsorption apparatus. The adsorption data were evaluated by several isotherm equations such as Langmuir, Freundlich, Temkin and Harkins-Jura isotherm models but were best described by the Freundlich isotherm model as it gave the highest correlation. The amount of adsorbed hydrogen by weight depended on the micropore volume of the sample, except for MWCNT and Fe_MWCNT. The porous samples were characterized by scanning electron microscopy (SEM) and N2 adsorption isotherms. The maximum hydrogen storage of 1.96 wt % at 77 K was achieved by Fe_MWCNT. Microporous Na_Y_Zeo and NH4_Y_Zeo showed higher hydrogen adsorption capacities than the mesoporous MCM-41. The hydrogen adsorption properties of these porous adsorbents may be further enhanced by different metal doping, thus paving the way for further study.
URI: https://ena.lpnu.ua/handle/ntb/46455
Copyright owner: © Національний університет „Львівська політехніка“, 2019
© Erdogan F., 2019
URL for reference material: https://doi.org/10.1016/j.cplett.2009.12.026
https://doi.org/10.1016/j.ijhydene.2011.03.038
https://doi.org/10.1016/j.ijhydene.2012.06.110
https://doi.org/10.1016/j.ijhydene.2014.10.145
https://doi.org/10.1016/j.ijhydene.2015.03.034
https://doi.org/10.1016/j.ijhydene.2016.03.050
https://doi.org/10.1016/j.ijhydene.2010.06.004
https://doi.org/10.1016/j.rser.2015.05.011
https://doi.org/10.1016/j.jiec.2015.02.012
https://doi.org/10.1016/j.ijhydene.2010.09.102
https://doi.org/10.1016/j.ijhydene.2007.12.021
https://doi.org/10.1016/j.jcis.2010.02.047
https://doi.org/10.1016/j.ultsonch.2016.12.032
https://doi.org/10.1360/cjcp2006.19(5).457.6
https://doi.org/10.1080/00032719.2015.1065879
https://doi.org/10.1080/00032719.2015.1086776
https://doi.org/10.7216/1300759920172410706
https://doi.org/10.1007/s11814-010-0460-8
https://doi.org/10.1260/0263617053499032
https://doi.org/10.1007/s11814-014-0096-1
https://doi.org/10.1007/s10934-012-9567-0
https://doi.org/10.4172/1948-5948.1000292
http://ena.lp.edu.ua
https://doi.org/10.1016/j.cej.2010.03.016
https://doi.org/10.1016/j.jallcom.2013.02.085
References (Ukraine): 1. Jiménez V., Sánchez P., Díaz J. et al.: Chem. Phys. Lett., 2010, 485,152. https://doi.org/10.1016/j.cplett.2009.12.026
2. Park S., Lee S.: Int. J. Hydrogen Energ., 2011, 36, 8381. https://doi.org/10.1016/j.ijhydene.2011.03.038
3. Zhao W., Fierro V., Fernández-Huerta N. et al.: Int. J. Hydrogen Energ., 2012, 37, 14278. https://doi.org/10.1016/j.ijhydene.2012.06.110
4. Dündar-Tekkaya E., Karatepe N.: Int. J. Hydrogen Energ., 2015, 40, 7665. https://doi.org/10.1016/j.ijhydene.2014.10.145
5. Wróbel-Iwaniec I., Díez N., Gryglewicz G.: Int. J, Hydrogen Energ., 2015, 40, 5788. https://doi.org/10.1016/j.ijhydene.2015.03.034
6. Tekkaya E., Yürüm Y.: Int. J. Hydrogen Energ., 2016, 41, 9789. https://doi.org/10.1016/j.ijhydene.2016.03.050
7. Fierro V., ZhaoW., IzquierdoM. et al.: Int. J. Hydrogen Energ., 2010, 35, 9038. https://doi.org/10.1016/j.ijhydene.2010.06.004
8. Niaz S., Manzoor T., Pandith A.: Renew. Sustain.e Energ. Rev., 2015, 50, 457. https://doi.org/10.1016/j.rser.2015.05.011
9. Choi Y., Park S.: J. Ind. Eng. Chem., 2015, 28, 32. https://doi.org/10.1016/j.jiec.2015.02.012
10. Akasaka H., Takahata T., Toda I. et al.: Int. J. Hydrogen Energ., 2011, 36, 580. https://doi.org/10.1016/j.ijhydene.2010.09.102
11. Sheppard D., Buckley C.: Int. J. Hydrogen Energ., 2008, 33, 1688. https://doi.org/10.1016/j.ijhydene.2007.12.021
12. Park S., Lee S.: J. Colloid Interface Sci., 2010, 346, 194. https://doi.org/10.1016/j.jcis.2010.02.047
13. Roy P., Das N.: Ultrason. Sonochem., 2017, 36, 466. https://doi.org/10.1016/j.ultsonch.2016.12.032
14. Du X., Wu E.: Chinese J. Chem. Phys., 2006, 19, 457. https://doi.org/10.1360/cjcp2006.19(5).457.6
15. Erdogan F.: Analyt. Lett., 2016, 49, 1079. https://doi.org/10.1080/00032719.2015.1065879
16. Erdogan T., Erdogan F.: Analyt. Lett., 2016, 49, 917. https://doi.org/10.1080/00032719.2015.1086776
17. Erdogan F.: Journal of Textiles and Engineer, 2017, 24, 181. https://doi.org/10.7216/1300759920172410706
18. Upare D., Yoon S., Lee C.: Korean J. Chem. Eng, 2011, 28, 731. https://doi.org/10.1007/s11814-010-0460-8
19. Sing K., Williams R.: Adsorpt. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032
20. Quantachrome Instruments Autosorb İQ and ASiQwin Gas Sorption System OperatingManual Version 1.11 (2010)
21. Moradi S.: Korean J. Chem. Eng., 2014, 31, 1651. https://doi.org/10.1007/s11814-014-0096-1
22. OhnoM., Okamura N., Kose T. et al.: J. PorousMater., 2012, 19, 1063. https://doi.org/10.1007/s10934-012-9567-0
23. Gupta V., Saleh T.: Synthesis of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-degradation [in:] Bianco S. (Ed.), Carbon Nanotubes – From Research to Applications. Intech (open access), Croatia, 295-312.
24. Saraf S., Vaidya V.:Microbial Biochem. Technol., 2016, 8, 236. https://doi.org/10.4172/1948-5948.1000292 Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption… 135
25. Hadi M., Samarghandi M., McKay G.: Chem. Eng. J., 2010, 160, 408. https://doi.org/10.1016/j.cej.2010.03.016
26. Minoda A., Oshima S., Iki H., Akiba E.: J. Alloy Compd., 2013, 580, 301. https://doi.org/10.1016/j.jallcom.2013.02.085
References (International): 1. Jiménez V., Sánchez P., Díaz J. et al., Chem. Phys. Lett., 2010, 485,152. https://doi.org/10.1016/j.cplett.2009.12.026
2. Park S., Lee S., Int. J. Hydrogen Energ., 2011, 36, 8381. https://doi.org/10.1016/j.ijhydene.2011.03.038
3. Zhao W., Fierro V., Fernández-Huerta N. et al., Int. J. Hydrogen Energ., 2012, 37, 14278. https://doi.org/10.1016/j.ijhydene.2012.06.110
4. Dündar-Tekkaya E., Karatepe N., Int. J. Hydrogen Energ., 2015, 40, 7665. https://doi.org/10.1016/j.ijhydene.2014.10.145
5. Wróbel-Iwaniec I., Díez N., Gryglewicz G., Int. J, Hydrogen Energ., 2015, 40, 5788. https://doi.org/10.1016/j.ijhydene.2015.03.034
6. Tekkaya E., Yürüm Y., Int. J. Hydrogen Energ., 2016, 41, 9789. https://doi.org/10.1016/j.ijhydene.2016.03.050
7. Fierro V., ZhaoW., IzquierdoM. et al., Int. J. Hydrogen Energ., 2010, 35, 9038. https://doi.org/10.1016/j.ijhydene.2010.06.004
8. Niaz S., Manzoor T., Pandith A., Renew. Sustain.e Energ. Rev., 2015, 50, 457. https://doi.org/10.1016/j.rser.2015.05.011
9. Choi Y., Park S., J. Ind. Eng. Chem., 2015, 28, 32. https://doi.org/10.1016/j.jiec.2015.02.012
10. Akasaka H., Takahata T., Toda I. et al., Int. J. Hydrogen Energ., 2011, 36, 580. https://doi.org/10.1016/j.ijhydene.2010.09.102
11. Sheppard D., Buckley C., Int. J. Hydrogen Energ., 2008, 33, 1688. https://doi.org/10.1016/j.ijhydene.2007.12.021
12. Park S., Lee S., J. Colloid Interface Sci., 2010, 346, 194. https://doi.org/10.1016/j.jcis.2010.02.047
13. Roy P., Das N., Ultrason. Sonochem., 2017, 36, 466. https://doi.org/10.1016/j.ultsonch.2016.12.032
14. Du X., Wu E., Chinese J. Chem. Phys., 2006, 19, 457. https://doi.org/10.1360/cjcp2006.19(5).457.6
15. Erdogan F., Analyt. Lett., 2016, 49, 1079. https://doi.org/10.1080/00032719.2015.1065879
16. Erdogan T., Erdogan F., Analyt. Lett., 2016, 49, 917. https://doi.org/10.1080/00032719.2015.1086776
17. Erdogan F., Journal of Textiles and Engineer, 2017, 24, 181. https://doi.org/10.7216/1300759920172410706
18. Upare D., Yoon S., Lee C., Korean J. Chem. Eng, 2011, 28, 731. https://doi.org/10.1007/s11814-010-0460-8
19. Sing K., Williams R., Adsorpt. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032
20. Quantachrome Instruments Autosorb İQ and ASiQwin Gas Sorption System OperatingManual Version 1.11 (2010)
21. Moradi S., Korean J. Chem. Eng., 2014, 31, 1651. https://doi.org/10.1007/s11814-014-0096-1
22. OhnoM., Okamura N., Kose T. et al., J. PorousMater., 2012, 19, 1063. https://doi.org/10.1007/s10934-012-9567-0
23. Gupta V., Saleh T., Synthesis of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-degradation [in:] Bianco S. (Ed.), Carbon Nanotubes – From Research to Applications. Intech (open access), Croatia, 295-312.
24. Saraf S., Vaidya V.:Microbial Biochem. Technol., 2016, 8, 236. https://doi.org/10.4172/1948-5948.1000292 Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption… 135
25. Hadi M., Samarghandi M., McKay G., Chem. Eng. J., 2010, 160, 408. https://doi.org/10.1016/j.cej.2010.03.016
26. Minoda A., Oshima S., Iki H., Akiba E., J. Alloy Compd., 2013, 580, 301. https://doi.org/10.1016/j.jallcom.2013.02.085
Content type: Article
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 2

Files in This Item:
File Description SizeFormat 
2019v13n2_Erdogan_F_O-Freundlich_Langmuir_Temkin_129-135.pdf376.73 kBAdobe PDFView/Open
2019v13n2_Erdogan_F_O-Freundlich_Langmuir_Temkin_129-135__COVER.png543.75 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.