https://oldena.lpnu.ua/handle/ntb/46455
Title: | Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents |
Other Titles: | Дослідження ізотерм Фрейндліха, Ленгмюра, Темкіна та Гаркінса-Юри при адсорбції H2 на пористих адсорбентах |
Authors: | Erdogan, Fatma Oguz |
Affiliation: | Kocaeli University |
Bibliographic description (Ukraine): | Erdogan F. O. Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents / Fatma Oguz Erdogan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 129–135. |
Bibliographic description (International): | Erdogan F. O. Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents / Fatma Oguz Erdogan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 129–135. |
Is part of: | Chemistry & Chemical Technology, 2 (13), 2019 |
Issue: | 2 |
Issue Date: | 28-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | адсорбційна здатність водню багатошарова карбонова нанотрубка цеоліт MCM-41 композит залізо/багатошарова карбонова нанотрубка hydrogen adsorption capacity multiwalled carbon nanotube zeolite MCM-41 iron multiwalled carbon nanotube composite |
Number of pages: | 7 |
Page range: | 129-135 |
Start page: | 129 |
End page: | 135 |
Abstract: | Вивчено ізотерми адсорбції та десорбції
водню для багатошарової карбонової нанотрубки (MWCNT),
багатошарової карбонової нанотрубки модифікованої залізом
(Fe_MWCNT), двох цеолітів (Na_Y_Zeo і NH4-Y_Zeo) та MCM-
41 за температури 77 К і атмосферного тиску. Адсорбційні
характеристики оцінено декількома ізотермічними рів-
няннями, такими як моделі Ленгмюра, Фрейндліха, Темкіна та
Гаркінса-Юри. Визначено, що ізотерма Фрейндліха найбільш
повно описує процес, оскільки має найвищу кореляцію. Вста-
новлено, що масова кількість адсорбованого водню залежить
від об'єму мікропори зразка, крім MWCNT та Fe_MWCNT.
Характеристику пористих зразків визначено за допомогою
скануючої електронної мікроскопії та ізотерм адсорбції
N2.Визначено, що максимальний запас водню 1,96 мас. %
досягається за 77 К при використанні Fe_MWCNT. Мікро-
пористий Na_Y_Zeo та NH4_Y_Zeo виявляють більшу
адсорбційну здатність водню, ніж мезопористий MCM-41.
Показана можливість покращення адсорбційні властивостей
цих пористих адсорбентів щодо водню внаслідок введення інших металів. The hydrogen adsorption and desorption isotherms of multiwalled carbon nanotube sample (MWCNT), an iron loaded multiwalled carbon nanotube (Fe_MWCNT), two zeolites (Na_Y_Zeo and NH4_Y_Zeo) and MCM-41 were measured at 77 K and atmospheric pressure by using the volumetric adsorption apparatus. The adsorption data were evaluated by several isotherm equations such as Langmuir, Freundlich, Temkin and Harkins-Jura isotherm models but were best described by the Freundlich isotherm model as it gave the highest correlation. The amount of adsorbed hydrogen by weight depended on the micropore volume of the sample, except for MWCNT and Fe_MWCNT. The porous samples were characterized by scanning electron microscopy (SEM) and N2 adsorption isotherms. The maximum hydrogen storage of 1.96 wt % at 77 K was achieved by Fe_MWCNT. Microporous Na_Y_Zeo and NH4_Y_Zeo showed higher hydrogen adsorption capacities than the mesoporous MCM-41. The hydrogen adsorption properties of these porous adsorbents may be further enhanced by different metal doping, thus paving the way for further study. |
URI: | https://ena.lpnu.ua/handle/ntb/46455 |
Copyright owner: | © Національний університет „Львівська політехніка“, 2019 © Erdogan F., 2019 |
URL for reference material: | https://doi.org/10.1016/j.cplett.2009.12.026 https://doi.org/10.1016/j.ijhydene.2011.03.038 https://doi.org/10.1016/j.ijhydene.2012.06.110 https://doi.org/10.1016/j.ijhydene.2014.10.145 https://doi.org/10.1016/j.ijhydene.2015.03.034 https://doi.org/10.1016/j.ijhydene.2016.03.050 https://doi.org/10.1016/j.ijhydene.2010.06.004 https://doi.org/10.1016/j.rser.2015.05.011 https://doi.org/10.1016/j.jiec.2015.02.012 https://doi.org/10.1016/j.ijhydene.2010.09.102 https://doi.org/10.1016/j.ijhydene.2007.12.021 https://doi.org/10.1016/j.jcis.2010.02.047 https://doi.org/10.1016/j.ultsonch.2016.12.032 https://doi.org/10.1360/cjcp2006.19(5).457.6 https://doi.org/10.1080/00032719.2015.1065879 https://doi.org/10.1080/00032719.2015.1086776 https://doi.org/10.7216/1300759920172410706 https://doi.org/10.1007/s11814-010-0460-8 https://doi.org/10.1260/0263617053499032 https://doi.org/10.1007/s11814-014-0096-1 https://doi.org/10.1007/s10934-012-9567-0 https://doi.org/10.4172/1948-5948.1000292 http://ena.lp.edu.ua https://doi.org/10.1016/j.cej.2010.03.016 https://doi.org/10.1016/j.jallcom.2013.02.085 |
References (Ukraine): | 1. Jiménez V., Sánchez P., Díaz J. et al.: Chem. Phys. Lett., 2010, 485,152. https://doi.org/10.1016/j.cplett.2009.12.026 2. Park S., Lee S.: Int. J. Hydrogen Energ., 2011, 36, 8381. https://doi.org/10.1016/j.ijhydene.2011.03.038 3. Zhao W., Fierro V., Fernández-Huerta N. et al.: Int. J. Hydrogen Energ., 2012, 37, 14278. https://doi.org/10.1016/j.ijhydene.2012.06.110 4. Dündar-Tekkaya E., Karatepe N.: Int. J. Hydrogen Energ., 2015, 40, 7665. https://doi.org/10.1016/j.ijhydene.2014.10.145 5. Wróbel-Iwaniec I., Díez N., Gryglewicz G.: Int. J, Hydrogen Energ., 2015, 40, 5788. https://doi.org/10.1016/j.ijhydene.2015.03.034 6. Tekkaya E., Yürüm Y.: Int. J. Hydrogen Energ., 2016, 41, 9789. https://doi.org/10.1016/j.ijhydene.2016.03.050 7. Fierro V., ZhaoW., IzquierdoM. et al.: Int. J. Hydrogen Energ., 2010, 35, 9038. https://doi.org/10.1016/j.ijhydene.2010.06.004 8. Niaz S., Manzoor T., Pandith A.: Renew. Sustain.e Energ. Rev., 2015, 50, 457. https://doi.org/10.1016/j.rser.2015.05.011 9. Choi Y., Park S.: J. Ind. Eng. Chem., 2015, 28, 32. https://doi.org/10.1016/j.jiec.2015.02.012 10. Akasaka H., Takahata T., Toda I. et al.: Int. J. Hydrogen Energ., 2011, 36, 580. https://doi.org/10.1016/j.ijhydene.2010.09.102 11. Sheppard D., Buckley C.: Int. J. Hydrogen Energ., 2008, 33, 1688. https://doi.org/10.1016/j.ijhydene.2007.12.021 12. Park S., Lee S.: J. Colloid Interface Sci., 2010, 346, 194. https://doi.org/10.1016/j.jcis.2010.02.047 13. Roy P., Das N.: Ultrason. Sonochem., 2017, 36, 466. https://doi.org/10.1016/j.ultsonch.2016.12.032 14. Du X., Wu E.: Chinese J. Chem. Phys., 2006, 19, 457. https://doi.org/10.1360/cjcp2006.19(5).457.6 15. Erdogan F.: Analyt. Lett., 2016, 49, 1079. https://doi.org/10.1080/00032719.2015.1065879 16. Erdogan T., Erdogan F.: Analyt. Lett., 2016, 49, 917. https://doi.org/10.1080/00032719.2015.1086776 17. Erdogan F.: Journal of Textiles and Engineer, 2017, 24, 181. https://doi.org/10.7216/1300759920172410706 18. Upare D., Yoon S., Lee C.: Korean J. Chem. Eng, 2011, 28, 731. https://doi.org/10.1007/s11814-010-0460-8 19. Sing K., Williams R.: Adsorpt. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032 20. Quantachrome Instruments Autosorb İQ and ASiQwin Gas Sorption System OperatingManual Version 1.11 (2010) 21. Moradi S.: Korean J. Chem. Eng., 2014, 31, 1651. https://doi.org/10.1007/s11814-014-0096-1 22. OhnoM., Okamura N., Kose T. et al.: J. PorousMater., 2012, 19, 1063. https://doi.org/10.1007/s10934-012-9567-0 23. Gupta V., Saleh T.: Synthesis of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-degradation [in:] Bianco S. (Ed.), Carbon Nanotubes – From Research to Applications. Intech (open access), Croatia, 295-312. 24. Saraf S., Vaidya V.:Microbial Biochem. Technol., 2016, 8, 236. https://doi.org/10.4172/1948-5948.1000292 Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption… 135 25. Hadi M., Samarghandi M., McKay G.: Chem. Eng. J., 2010, 160, 408. https://doi.org/10.1016/j.cej.2010.03.016 26. Minoda A., Oshima S., Iki H., Akiba E.: J. Alloy Compd., 2013, 580, 301. https://doi.org/10.1016/j.jallcom.2013.02.085 |
References (International): | 1. Jiménez V., Sánchez P., Díaz J. et al., Chem. Phys. Lett., 2010, 485,152. https://doi.org/10.1016/j.cplett.2009.12.026 2. Park S., Lee S., Int. J. Hydrogen Energ., 2011, 36, 8381. https://doi.org/10.1016/j.ijhydene.2011.03.038 3. Zhao W., Fierro V., Fernández-Huerta N. et al., Int. J. Hydrogen Energ., 2012, 37, 14278. https://doi.org/10.1016/j.ijhydene.2012.06.110 4. Dündar-Tekkaya E., Karatepe N., Int. J. Hydrogen Energ., 2015, 40, 7665. https://doi.org/10.1016/j.ijhydene.2014.10.145 5. Wróbel-Iwaniec I., Díez N., Gryglewicz G., Int. J, Hydrogen Energ., 2015, 40, 5788. https://doi.org/10.1016/j.ijhydene.2015.03.034 6. Tekkaya E., Yürüm Y., Int. J. Hydrogen Energ., 2016, 41, 9789. https://doi.org/10.1016/j.ijhydene.2016.03.050 7. Fierro V., ZhaoW., IzquierdoM. et al., Int. J. Hydrogen Energ., 2010, 35, 9038. https://doi.org/10.1016/j.ijhydene.2010.06.004 8. Niaz S., Manzoor T., Pandith A., Renew. Sustain.e Energ. Rev., 2015, 50, 457. https://doi.org/10.1016/j.rser.2015.05.011 9. Choi Y., Park S., J. Ind. Eng. Chem., 2015, 28, 32. https://doi.org/10.1016/j.jiec.2015.02.012 10. Akasaka H., Takahata T., Toda I. et al., Int. J. Hydrogen Energ., 2011, 36, 580. https://doi.org/10.1016/j.ijhydene.2010.09.102 11. Sheppard D., Buckley C., Int. J. Hydrogen Energ., 2008, 33, 1688. https://doi.org/10.1016/j.ijhydene.2007.12.021 12. Park S., Lee S., J. Colloid Interface Sci., 2010, 346, 194. https://doi.org/10.1016/j.jcis.2010.02.047 13. Roy P., Das N., Ultrason. Sonochem., 2017, 36, 466. https://doi.org/10.1016/j.ultsonch.2016.12.032 14. Du X., Wu E., Chinese J. Chem. Phys., 2006, 19, 457. https://doi.org/10.1360/cjcp2006.19(5).457.6 15. Erdogan F., Analyt. Lett., 2016, 49, 1079. https://doi.org/10.1080/00032719.2015.1065879 16. Erdogan T., Erdogan F., Analyt. Lett., 2016, 49, 917. https://doi.org/10.1080/00032719.2015.1086776 17. Erdogan F., Journal of Textiles and Engineer, 2017, 24, 181. https://doi.org/10.7216/1300759920172410706 18. Upare D., Yoon S., Lee C., Korean J. Chem. Eng, 2011, 28, 731. https://doi.org/10.1007/s11814-010-0460-8 19. Sing K., Williams R., Adsorpt. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032 20. Quantachrome Instruments Autosorb İQ and ASiQwin Gas Sorption System OperatingManual Version 1.11 (2010) 21. Moradi S., Korean J. Chem. Eng., 2014, 31, 1651. https://doi.org/10.1007/s11814-014-0096-1 22. OhnoM., Okamura N., Kose T. et al., J. PorousMater., 2012, 19, 1063. https://doi.org/10.1007/s10934-012-9567-0 23. Gupta V., Saleh T., Synthesis of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-degradation [in:] Bianco S. (Ed.), Carbon Nanotubes – From Research to Applications. Intech (open access), Croatia, 295-312. 24. Saraf S., Vaidya V.:Microbial Biochem. Technol., 2016, 8, 236. https://doi.org/10.4172/1948-5948.1000292 Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption… 135 25. Hadi M., Samarghandi M., McKay G., Chem. Eng. J., 2010, 160, 408. https://doi.org/10.1016/j.cej.2010.03.016 26. Minoda A., Oshima S., Iki H., Akiba E., J. Alloy Compd., 2013, 580, 301. https://doi.org/10.1016/j.jallcom.2013.02.085 |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 2 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v13n2_Erdogan_F_O-Freundlich_Langmuir_Temkin_129-135.pdf | 376.73 kB | Adobe PDF | View/Open | |
2019v13n2_Erdogan_F_O-Freundlich_Langmuir_Temkin_129-135__COVER.png | 543.75 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.