DC Field | Value | Language |
dc.contributor.author | Erdogan, Fatma Oguz | |
dc.date.accessioned | 2020-03-02T12:28:04Z | - |
dc.date.available | 2020-03-02T12:28:04Z | - |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.identifier.citation | Erdogan F. O. Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents / Fatma Oguz Erdogan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 129–135. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46455 | - |
dc.description.abstract | Вивчено ізотерми адсорбції та десорбції
водню для багатошарової карбонової нанотрубки (MWCNT),
багатошарової карбонової нанотрубки модифікованої залізом
(Fe_MWCNT), двох цеолітів (Na_Y_Zeo і NH4-Y_Zeo) та MCM-
41 за температури 77 К і атмосферного тиску. Адсорбційні
характеристики оцінено декількома ізотермічними рів-
няннями, такими як моделі Ленгмюра, Фрейндліха, Темкіна та
Гаркінса-Юри. Визначено, що ізотерма Фрейндліха найбільш
повно описує процес, оскільки має найвищу кореляцію. Вста-
новлено, що масова кількість адсорбованого водню залежить
від об'єму мікропори зразка, крім MWCNT та Fe_MWCNT.
Характеристику пористих зразків визначено за допомогою
скануючої електронної мікроскопії та ізотерм адсорбції
N2.Визначено, що максимальний запас водню 1,96 мас. %
досягається за 77 К при використанні Fe_MWCNT. Мікро-
пористий Na_Y_Zeo та NH4_Y_Zeo виявляють більшу
адсорбційну здатність водню, ніж мезопористий MCM-41.
Показана можливість покращення адсорбційні властивостей
цих пористих адсорбентів щодо водню внаслідок введення інших металів. | |
dc.description.abstract | The hydrogen adsorption and desorption
isotherms of multiwalled carbon nanotube sample
(MWCNT), an iron loaded multiwalled carbon nanotube
(Fe_MWCNT), two zeolites (Na_Y_Zeo and
NH4_Y_Zeo) and MCM-41 were measured at 77 K and
atmospheric pressure by using the volumetric adsorption
apparatus. The adsorption data were evaluated by several
isotherm equations such as Langmuir, Freundlich, Temkin
and Harkins-Jura isotherm models but were best described
by the Freundlich isotherm model as it gave the highest
correlation. The amount of adsorbed hydrogen by weight
depended on the micropore volume of the sample, except
for MWCNT and Fe_MWCNT. The porous samples were
characterized by scanning electron microscopy (SEM) and
N2 adsorption isotherms. The maximum hydrogen storage
of 1.96 wt % at 77 K was achieved by Fe_MWCNT.
Microporous Na_Y_Zeo and NH4_Y_Zeo showed higher
hydrogen adsorption capacities than the mesoporous
MCM-41. The hydrogen adsorption properties of these
porous adsorbents may be further enhanced by different
metal doping, thus paving the way for further study. | |
dc.format.extent | 129-135 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (13), 2019 | |
dc.relation.uri | https://doi.org/10.1016/j.cplett.2009.12.026 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2011.03.038 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2012.06.110 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2014.10.145 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2015.03.034 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2016.03.050 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2010.06.004 | |
dc.relation.uri | https://doi.org/10.1016/j.rser.2015.05.011 | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2015.02.012 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2010.09.102 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2007.12.021 | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2010.02.047 | |
dc.relation.uri | https://doi.org/10.1016/j.ultsonch.2016.12.032 | |
dc.relation.uri | https://doi.org/10.1360/cjcp2006.19(5).457.6 | |
dc.relation.uri | https://doi.org/10.1080/00032719.2015.1065879 | |
dc.relation.uri | https://doi.org/10.1080/00032719.2015.1086776 | |
dc.relation.uri | https://doi.org/10.7216/1300759920172410706 | |
dc.relation.uri | https://doi.org/10.1007/s11814-010-0460-8 | |
dc.relation.uri | https://doi.org/10.1260/0263617053499032 | |
dc.relation.uri | https://doi.org/10.1007/s11814-014-0096-1 | |
dc.relation.uri | https://doi.org/10.1007/s10934-012-9567-0 | |
dc.relation.uri | https://doi.org/10.4172/1948-5948.1000292 | |
dc.relation.uri | http://ena.lp.edu.ua | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2010.03.016 | |
dc.relation.uri | https://doi.org/10.1016/j.jallcom.2013.02.085 | |
dc.subject | адсорбційна здатність водню | |
dc.subject | багатошарова карбонова нанотрубка | |
dc.subject | цеоліт | |
dc.subject | MCM-41 | |
dc.subject | композит залізо/багатошарова карбонова нанотрубка | |
dc.subject | hydrogen adsorption capacity | |
dc.subject | multiwalled carbon nanotube | |
dc.subject | zeolite | |
dc.subject | MCM-41 | |
dc.subject | iron multiwalled carbon nanotube composite | |
dc.title | Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents | |
dc.title.alternative | Дослідження ізотерм Фрейндліха, Ленгмюра, Темкіна та Гаркінса-Юри при адсорбції H2 на пористих адсорбентах | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.rights.holder | © Erdogan F., 2019 | |
dc.contributor.affiliation | Kocaeli University | |
dc.format.pages | 7 | |
dc.identifier.citationen | Erdogan F. O. Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents / Fatma Oguz Erdogan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 129–135. | |
dc.relation.references | 1. Jiménez V., Sánchez P., Díaz J. et al.: Chem. Phys. Lett., 2010, 485,152. https://doi.org/10.1016/j.cplett.2009.12.026 | |
dc.relation.references | 2. Park S., Lee S.: Int. J. Hydrogen Energ., 2011, 36, 8381. https://doi.org/10.1016/j.ijhydene.2011.03.038 | |
dc.relation.references | 3. Zhao W., Fierro V., Fernández-Huerta N. et al.: Int. J. Hydrogen Energ., 2012, 37, 14278. https://doi.org/10.1016/j.ijhydene.2012.06.110 | |
dc.relation.references | 4. Dündar-Tekkaya E., Karatepe N.: Int. J. Hydrogen Energ., 2015, 40, 7665. https://doi.org/10.1016/j.ijhydene.2014.10.145 | |
dc.relation.references | 5. Wróbel-Iwaniec I., Díez N., Gryglewicz G.: Int. J, Hydrogen Energ., 2015, 40, 5788. https://doi.org/10.1016/j.ijhydene.2015.03.034 | |
dc.relation.references | 6. Tekkaya E., Yürüm Y.: Int. J. Hydrogen Energ., 2016, 41, 9789. https://doi.org/10.1016/j.ijhydene.2016.03.050 | |
dc.relation.references | 7. Fierro V., ZhaoW., IzquierdoM. et al.: Int. J. Hydrogen Energ., 2010, 35, 9038. https://doi.org/10.1016/j.ijhydene.2010.06.004 | |
dc.relation.references | 8. Niaz S., Manzoor T., Pandith A.: Renew. Sustain.e Energ. Rev., 2015, 50, 457. https://doi.org/10.1016/j.rser.2015.05.011 | |
dc.relation.references | 9. Choi Y., Park S.: J. Ind. Eng. Chem., 2015, 28, 32. https://doi.org/10.1016/j.jiec.2015.02.012 | |
dc.relation.references | 10. Akasaka H., Takahata T., Toda I. et al.: Int. J. Hydrogen Energ., 2011, 36, 580. https://doi.org/10.1016/j.ijhydene.2010.09.102 | |
dc.relation.references | 11. Sheppard D., Buckley C.: Int. J. Hydrogen Energ., 2008, 33, 1688. https://doi.org/10.1016/j.ijhydene.2007.12.021 | |
dc.relation.references | 12. Park S., Lee S.: J. Colloid Interface Sci., 2010, 346, 194. https://doi.org/10.1016/j.jcis.2010.02.047 | |
dc.relation.references | 13. Roy P., Das N.: Ultrason. Sonochem., 2017, 36, 466. https://doi.org/10.1016/j.ultsonch.2016.12.032 | |
dc.relation.references | 14. Du X., Wu E.: Chinese J. Chem. Phys., 2006, 19, 457. https://doi.org/10.1360/cjcp2006.19(5).457.6 | |
dc.relation.references | 15. Erdogan F.: Analyt. Lett., 2016, 49, 1079. https://doi.org/10.1080/00032719.2015.1065879 | |
dc.relation.references | 16. Erdogan T., Erdogan F.: Analyt. Lett., 2016, 49, 917. https://doi.org/10.1080/00032719.2015.1086776 | |
dc.relation.references | 17. Erdogan F.: Journal of Textiles and Engineer, 2017, 24, 181. https://doi.org/10.7216/1300759920172410706 | |
dc.relation.references | 18. Upare D., Yoon S., Lee C.: Korean J. Chem. Eng, 2011, 28, 731. https://doi.org/10.1007/s11814-010-0460-8 | |
dc.relation.references | 19. Sing K., Williams R.: Adsorpt. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032 | |
dc.relation.references | 20. Quantachrome Instruments Autosorb İQ and ASiQwin Gas Sorption System OperatingManual Version 1.11 (2010) | |
dc.relation.references | 21. Moradi S.: Korean J. Chem. Eng., 2014, 31, 1651. https://doi.org/10.1007/s11814-014-0096-1 | |
dc.relation.references | 22. OhnoM., Okamura N., Kose T. et al.: J. PorousMater., 2012, 19, 1063. https://doi.org/10.1007/s10934-012-9567-0 | |
dc.relation.references | 23. Gupta V., Saleh T.: Synthesis of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-degradation [in:] Bianco S. (Ed.), Carbon Nanotubes – From Research to Applications. Intech (open access), Croatia, 295-312. | |
dc.relation.references | 24. Saraf S., Vaidya V.:Microbial Biochem. Technol., 2016, 8, 236. https://doi.org/10.4172/1948-5948.1000292 Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption… 135 | |
dc.relation.references | 25. Hadi M., Samarghandi M., McKay G.: Chem. Eng. J., 2010, 160, 408. https://doi.org/10.1016/j.cej.2010.03.016 | |
dc.relation.references | 26. Minoda A., Oshima S., Iki H., Akiba E.: J. Alloy Compd., 2013, 580, 301. https://doi.org/10.1016/j.jallcom.2013.02.085 | |
dc.relation.referencesen | 1. Jiménez V., Sánchez P., Díaz J. et al., Chem. Phys. Lett., 2010, 485,152. https://doi.org/10.1016/j.cplett.2009.12.026 | |
dc.relation.referencesen | 2. Park S., Lee S., Int. J. Hydrogen Energ., 2011, 36, 8381. https://doi.org/10.1016/j.ijhydene.2011.03.038 | |
dc.relation.referencesen | 3. Zhao W., Fierro V., Fernández-Huerta N. et al., Int. J. Hydrogen Energ., 2012, 37, 14278. https://doi.org/10.1016/j.ijhydene.2012.06.110 | |
dc.relation.referencesen | 4. Dündar-Tekkaya E., Karatepe N., Int. J. Hydrogen Energ., 2015, 40, 7665. https://doi.org/10.1016/j.ijhydene.2014.10.145 | |
dc.relation.referencesen | 5. Wróbel-Iwaniec I., Díez N., Gryglewicz G., Int. J, Hydrogen Energ., 2015, 40, 5788. https://doi.org/10.1016/j.ijhydene.2015.03.034 | |
dc.relation.referencesen | 6. Tekkaya E., Yürüm Y., Int. J. Hydrogen Energ., 2016, 41, 9789. https://doi.org/10.1016/j.ijhydene.2016.03.050 | |
dc.relation.referencesen | 7. Fierro V., ZhaoW., IzquierdoM. et al., Int. J. Hydrogen Energ., 2010, 35, 9038. https://doi.org/10.1016/j.ijhydene.2010.06.004 | |
dc.relation.referencesen | 8. Niaz S., Manzoor T., Pandith A., Renew. Sustain.e Energ. Rev., 2015, 50, 457. https://doi.org/10.1016/j.rser.2015.05.011 | |
dc.relation.referencesen | 9. Choi Y., Park S., J. Ind. Eng. Chem., 2015, 28, 32. https://doi.org/10.1016/j.jiec.2015.02.012 | |
dc.relation.referencesen | 10. Akasaka H., Takahata T., Toda I. et al., Int. J. Hydrogen Energ., 2011, 36, 580. https://doi.org/10.1016/j.ijhydene.2010.09.102 | |
dc.relation.referencesen | 11. Sheppard D., Buckley C., Int. J. Hydrogen Energ., 2008, 33, 1688. https://doi.org/10.1016/j.ijhydene.2007.12.021 | |
dc.relation.referencesen | 12. Park S., Lee S., J. Colloid Interface Sci., 2010, 346, 194. https://doi.org/10.1016/j.jcis.2010.02.047 | |
dc.relation.referencesen | 13. Roy P., Das N., Ultrason. Sonochem., 2017, 36, 466. https://doi.org/10.1016/j.ultsonch.2016.12.032 | |
dc.relation.referencesen | 14. Du X., Wu E., Chinese J. Chem. Phys., 2006, 19, 457. https://doi.org/10.1360/cjcp2006.19(5).457.6 | |
dc.relation.referencesen | 15. Erdogan F., Analyt. Lett., 2016, 49, 1079. https://doi.org/10.1080/00032719.2015.1065879 | |
dc.relation.referencesen | 16. Erdogan T., Erdogan F., Analyt. Lett., 2016, 49, 917. https://doi.org/10.1080/00032719.2015.1086776 | |
dc.relation.referencesen | 17. Erdogan F., Journal of Textiles and Engineer, 2017, 24, 181. https://doi.org/10.7216/1300759920172410706 | |
dc.relation.referencesen | 18. Upare D., Yoon S., Lee C., Korean J. Chem. Eng, 2011, 28, 731. https://doi.org/10.1007/s11814-010-0460-8 | |
dc.relation.referencesen | 19. Sing K., Williams R., Adsorpt. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032 | |
dc.relation.referencesen | 20. Quantachrome Instruments Autosorb İQ and ASiQwin Gas Sorption System OperatingManual Version 1.11 (2010) | |
dc.relation.referencesen | 21. Moradi S., Korean J. Chem. Eng., 2014, 31, 1651. https://doi.org/10.1007/s11814-014-0096-1 | |
dc.relation.referencesen | 22. OhnoM., Okamura N., Kose T. et al., J. PorousMater., 2012, 19, 1063. https://doi.org/10.1007/s10934-012-9567-0 | |
dc.relation.referencesen | 23. Gupta V., Saleh T., Synthesis of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-degradation [in:] Bianco S. (Ed.), Carbon Nanotubes – From Research to Applications. Intech (open access), Croatia, 295-312. | |
dc.relation.referencesen | 24. Saraf S., Vaidya V.:Microbial Biochem. Technol., 2016, 8, 236. https://doi.org/10.4172/1948-5948.1000292 Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption… 135 | |
dc.relation.referencesen | 25. Hadi M., Samarghandi M., McKay G., Chem. Eng. J., 2010, 160, 408. https://doi.org/10.1016/j.cej.2010.03.016 | |
dc.relation.referencesen | 26. Minoda A., Oshima S., Iki H., Akiba E., J. Alloy Compd., 2013, 580, 301. https://doi.org/10.1016/j.jallcom.2013.02.085 | |
dc.citation.issue | 2 | |
dc.citation.spage | 129 | |
dc.citation.epage | 135 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 2
|