Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46455
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErdogan, Fatma Oguz
dc.date.accessioned2020-03-02T12:28:04Z-
dc.date.available2020-03-02T12:28:04Z-
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.identifier.citationErdogan F. O. Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents / Fatma Oguz Erdogan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 129–135.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46455-
dc.description.abstractВивчено ізотерми адсорбції та десорбції водню для багатошарової карбонової нанотрубки (MWCNT), багатошарової карбонової нанотрубки модифікованої залізом (Fe_MWCNT), двох цеолітів (Na_Y_Zeo і NH4-Y_Zeo) та MCM- 41 за температури 77 К і атмосферного тиску. Адсорбційні характеристики оцінено декількома ізотермічними рів- няннями, такими як моделі Ленгмюра, Фрейндліха, Темкіна та Гаркінса-Юри. Визначено, що ізотерма Фрейндліха найбільш повно описує процес, оскільки має найвищу кореляцію. Вста- новлено, що масова кількість адсорбованого водню залежить від об'єму мікропори зразка, крім MWCNT та Fe_MWCNT. Характеристику пористих зразків визначено за допомогою скануючої електронної мікроскопії та ізотерм адсорбції N2.Визначено, що максимальний запас водню 1,96 мас. % досягається за 77 К при використанні Fe_MWCNT. Мікро- пористий Na_Y_Zeo та NH4_Y_Zeo виявляють більшу адсорбційну здатність водню, ніж мезопористий MCM-41. Показана можливість покращення адсорбційні властивостей цих пористих адсорбентів щодо водню внаслідок введення інших металів.
dc.description.abstractThe hydrogen adsorption and desorption isotherms of multiwalled carbon nanotube sample (MWCNT), an iron loaded multiwalled carbon nanotube (Fe_MWCNT), two zeolites (Na_Y_Zeo and NH4_Y_Zeo) and MCM-41 were measured at 77 K and atmospheric pressure by using the volumetric adsorption apparatus. The adsorption data were evaluated by several isotherm equations such as Langmuir, Freundlich, Temkin and Harkins-Jura isotherm models but were best described by the Freundlich isotherm model as it gave the highest correlation. The amount of adsorbed hydrogen by weight depended on the micropore volume of the sample, except for MWCNT and Fe_MWCNT. The porous samples were characterized by scanning electron microscopy (SEM) and N2 adsorption isotherms. The maximum hydrogen storage of 1.96 wt % at 77 K was achieved by Fe_MWCNT. Microporous Na_Y_Zeo and NH4_Y_Zeo showed higher hydrogen adsorption capacities than the mesoporous MCM-41. The hydrogen adsorption properties of these porous adsorbents may be further enhanced by different metal doping, thus paving the way for further study.
dc.format.extent129-135
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (13), 2019
dc.relation.urihttps://doi.org/10.1016/j.cplett.2009.12.026
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2011.03.038
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2012.06.110
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2014.10.145
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2015.03.034
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2016.03.050
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2010.06.004
dc.relation.urihttps://doi.org/10.1016/j.rser.2015.05.011
dc.relation.urihttps://doi.org/10.1016/j.jiec.2015.02.012
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2010.09.102
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2007.12.021
dc.relation.urihttps://doi.org/10.1016/j.jcis.2010.02.047
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2016.12.032
dc.relation.urihttps://doi.org/10.1360/cjcp2006.19(5).457.6
dc.relation.urihttps://doi.org/10.1080/00032719.2015.1065879
dc.relation.urihttps://doi.org/10.1080/00032719.2015.1086776
dc.relation.urihttps://doi.org/10.7216/1300759920172410706
dc.relation.urihttps://doi.org/10.1007/s11814-010-0460-8
dc.relation.urihttps://doi.org/10.1260/0263617053499032
dc.relation.urihttps://doi.org/10.1007/s11814-014-0096-1
dc.relation.urihttps://doi.org/10.1007/s10934-012-9567-0
dc.relation.urihttps://doi.org/10.4172/1948-5948.1000292
dc.relation.urihttp://ena.lp.edu.ua
dc.relation.urihttps://doi.org/10.1016/j.cej.2010.03.016
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2013.02.085
dc.subjectадсорбційна здатність водню
dc.subjectбагатошарова карбонова нанотрубка
dc.subjectцеоліт
dc.subjectMCM-41
dc.subjectкомпозит залізо/багатошарова карбонова нанотрубка
dc.subjecthydrogen adsorption capacity
dc.subjectmultiwalled carbon nanotube
dc.subjectzeolite
dc.subjectMCM-41
dc.subjectiron multiwalled carbon nanotube composite
dc.titleFreundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents
dc.title.alternativeДослідження ізотерм Фрейндліха, Ленгмюра, Темкіна та Гаркінса-Юри при адсорбції H2 на пористих адсорбентах
dc.typeArticle
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Erdogan F., 2019
dc.contributor.affiliationKocaeli University
dc.format.pages7
dc.identifier.citationenErdogan F. O. Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents / Fatma Oguz Erdogan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 129–135.
dc.relation.references1. Jiménez V., Sánchez P., Díaz J. et al.: Chem. Phys. Lett., 2010, 485,152. https://doi.org/10.1016/j.cplett.2009.12.026
dc.relation.references2. Park S., Lee S.: Int. J. Hydrogen Energ., 2011, 36, 8381. https://doi.org/10.1016/j.ijhydene.2011.03.038
dc.relation.references3. Zhao W., Fierro V., Fernández-Huerta N. et al.: Int. J. Hydrogen Energ., 2012, 37, 14278. https://doi.org/10.1016/j.ijhydene.2012.06.110
dc.relation.references4. Dündar-Tekkaya E., Karatepe N.: Int. J. Hydrogen Energ., 2015, 40, 7665. https://doi.org/10.1016/j.ijhydene.2014.10.145
dc.relation.references5. Wróbel-Iwaniec I., Díez N., Gryglewicz G.: Int. J, Hydrogen Energ., 2015, 40, 5788. https://doi.org/10.1016/j.ijhydene.2015.03.034
dc.relation.references6. Tekkaya E., Yürüm Y.: Int. J. Hydrogen Energ., 2016, 41, 9789. https://doi.org/10.1016/j.ijhydene.2016.03.050
dc.relation.references7. Fierro V., ZhaoW., IzquierdoM. et al.: Int. J. Hydrogen Energ., 2010, 35, 9038. https://doi.org/10.1016/j.ijhydene.2010.06.004
dc.relation.references8. Niaz S., Manzoor T., Pandith A.: Renew. Sustain.e Energ. Rev., 2015, 50, 457. https://doi.org/10.1016/j.rser.2015.05.011
dc.relation.references9. Choi Y., Park S.: J. Ind. Eng. Chem., 2015, 28, 32. https://doi.org/10.1016/j.jiec.2015.02.012
dc.relation.references10. Akasaka H., Takahata T., Toda I. et al.: Int. J. Hydrogen Energ., 2011, 36, 580. https://doi.org/10.1016/j.ijhydene.2010.09.102
dc.relation.references11. Sheppard D., Buckley C.: Int. J. Hydrogen Energ., 2008, 33, 1688. https://doi.org/10.1016/j.ijhydene.2007.12.021
dc.relation.references12. Park S., Lee S.: J. Colloid Interface Sci., 2010, 346, 194. https://doi.org/10.1016/j.jcis.2010.02.047
dc.relation.references13. Roy P., Das N.: Ultrason. Sonochem., 2017, 36, 466. https://doi.org/10.1016/j.ultsonch.2016.12.032
dc.relation.references14. Du X., Wu E.: Chinese J. Chem. Phys., 2006, 19, 457. https://doi.org/10.1360/cjcp2006.19(5).457.6
dc.relation.references15. Erdogan F.: Analyt. Lett., 2016, 49, 1079. https://doi.org/10.1080/00032719.2015.1065879
dc.relation.references16. Erdogan T., Erdogan F.: Analyt. Lett., 2016, 49, 917. https://doi.org/10.1080/00032719.2015.1086776
dc.relation.references17. Erdogan F.: Journal of Textiles and Engineer, 2017, 24, 181. https://doi.org/10.7216/1300759920172410706
dc.relation.references18. Upare D., Yoon S., Lee C.: Korean J. Chem. Eng, 2011, 28, 731. https://doi.org/10.1007/s11814-010-0460-8
dc.relation.references19. Sing K., Williams R.: Adsorpt. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032
dc.relation.references20. Quantachrome Instruments Autosorb İQ and ASiQwin Gas Sorption System OperatingManual Version 1.11 (2010)
dc.relation.references21. Moradi S.: Korean J. Chem. Eng., 2014, 31, 1651. https://doi.org/10.1007/s11814-014-0096-1
dc.relation.references22. OhnoM., Okamura N., Kose T. et al.: J. PorousMater., 2012, 19, 1063. https://doi.org/10.1007/s10934-012-9567-0
dc.relation.references23. Gupta V., Saleh T.: Synthesis of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-degradation [in:] Bianco S. (Ed.), Carbon Nanotubes – From Research to Applications. Intech (open access), Croatia, 295-312.
dc.relation.references24. Saraf S., Vaidya V.:Microbial Biochem. Technol., 2016, 8, 236. https://doi.org/10.4172/1948-5948.1000292 Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption… 135
dc.relation.references25. Hadi M., Samarghandi M., McKay G.: Chem. Eng. J., 2010, 160, 408. https://doi.org/10.1016/j.cej.2010.03.016
dc.relation.references26. Minoda A., Oshima S., Iki H., Akiba E.: J. Alloy Compd., 2013, 580, 301. https://doi.org/10.1016/j.jallcom.2013.02.085
dc.relation.referencesen1. Jiménez V., Sánchez P., Díaz J. et al., Chem. Phys. Lett., 2010, 485,152. https://doi.org/10.1016/j.cplett.2009.12.026
dc.relation.referencesen2. Park S., Lee S., Int. J. Hydrogen Energ., 2011, 36, 8381. https://doi.org/10.1016/j.ijhydene.2011.03.038
dc.relation.referencesen3. Zhao W., Fierro V., Fernández-Huerta N. et al., Int. J. Hydrogen Energ., 2012, 37, 14278. https://doi.org/10.1016/j.ijhydene.2012.06.110
dc.relation.referencesen4. Dündar-Tekkaya E., Karatepe N., Int. J. Hydrogen Energ., 2015, 40, 7665. https://doi.org/10.1016/j.ijhydene.2014.10.145
dc.relation.referencesen5. Wróbel-Iwaniec I., Díez N., Gryglewicz G., Int. J, Hydrogen Energ., 2015, 40, 5788. https://doi.org/10.1016/j.ijhydene.2015.03.034
dc.relation.referencesen6. Tekkaya E., Yürüm Y., Int. J. Hydrogen Energ., 2016, 41, 9789. https://doi.org/10.1016/j.ijhydene.2016.03.050
dc.relation.referencesen7. Fierro V., ZhaoW., IzquierdoM. et al., Int. J. Hydrogen Energ., 2010, 35, 9038. https://doi.org/10.1016/j.ijhydene.2010.06.004
dc.relation.referencesen8. Niaz S., Manzoor T., Pandith A., Renew. Sustain.e Energ. Rev., 2015, 50, 457. https://doi.org/10.1016/j.rser.2015.05.011
dc.relation.referencesen9. Choi Y., Park S., J. Ind. Eng. Chem., 2015, 28, 32. https://doi.org/10.1016/j.jiec.2015.02.012
dc.relation.referencesen10. Akasaka H., Takahata T., Toda I. et al., Int. J. Hydrogen Energ., 2011, 36, 580. https://doi.org/10.1016/j.ijhydene.2010.09.102
dc.relation.referencesen11. Sheppard D., Buckley C., Int. J. Hydrogen Energ., 2008, 33, 1688. https://doi.org/10.1016/j.ijhydene.2007.12.021
dc.relation.referencesen12. Park S., Lee S., J. Colloid Interface Sci., 2010, 346, 194. https://doi.org/10.1016/j.jcis.2010.02.047
dc.relation.referencesen13. Roy P., Das N., Ultrason. Sonochem., 2017, 36, 466. https://doi.org/10.1016/j.ultsonch.2016.12.032
dc.relation.referencesen14. Du X., Wu E., Chinese J. Chem. Phys., 2006, 19, 457. https://doi.org/10.1360/cjcp2006.19(5).457.6
dc.relation.referencesen15. Erdogan F., Analyt. Lett., 2016, 49, 1079. https://doi.org/10.1080/00032719.2015.1065879
dc.relation.referencesen16. Erdogan T., Erdogan F., Analyt. Lett., 2016, 49, 917. https://doi.org/10.1080/00032719.2015.1086776
dc.relation.referencesen17. Erdogan F., Journal of Textiles and Engineer, 2017, 24, 181. https://doi.org/10.7216/1300759920172410706
dc.relation.referencesen18. Upare D., Yoon S., Lee C., Korean J. Chem. Eng, 2011, 28, 731. https://doi.org/10.1007/s11814-010-0460-8
dc.relation.referencesen19. Sing K., Williams R., Adsorpt. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032
dc.relation.referencesen20. Quantachrome Instruments Autosorb İQ and ASiQwin Gas Sorption System OperatingManual Version 1.11 (2010)
dc.relation.referencesen21. Moradi S., Korean J. Chem. Eng., 2014, 31, 1651. https://doi.org/10.1007/s11814-014-0096-1
dc.relation.referencesen22. OhnoM., Okamura N., Kose T. et al., J. PorousMater., 2012, 19, 1063. https://doi.org/10.1007/s10934-012-9567-0
dc.relation.referencesen23. Gupta V., Saleh T., Synthesis of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-degradation [in:] Bianco S. (Ed.), Carbon Nanotubes – From Research to Applications. Intech (open access), Croatia, 295-312.
dc.relation.referencesen24. Saraf S., Vaidya V.:Microbial Biochem. Technol., 2016, 8, 236. https://doi.org/10.4172/1948-5948.1000292 Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption… 135
dc.relation.referencesen25. Hadi M., Samarghandi M., McKay G., Chem. Eng. J., 2010, 160, 408. https://doi.org/10.1016/j.cej.2010.03.016
dc.relation.referencesen26. Minoda A., Oshima S., Iki H., Akiba E., J. Alloy Compd., 2013, 580, 301. https://doi.org/10.1016/j.jallcom.2013.02.085
dc.citation.issue2
dc.citation.spage129
dc.citation.epage135
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 2

Files in This Item:
File Description SizeFormat 
2019v13n2_Erdogan_F_O-Freundlich_Langmuir_Temkin_129-135.pdf376.73 kBAdobe PDFView/Open
2019v13n2_Erdogan_F_O-Freundlich_Langmuir_Temkin_129-135__COVER.png543.75 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.