https://oldena.lpnu.ua/handle/ntb/46429
Title: | low temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts |
Other Titles: | Низькотемпературне окиснення акролеїну до акрилової кислоти пероксидом водню на Se-органічних каталізаторах |
Authors: | Nebesnyi, Roman Ivasiv, Volodymyr Pikh, Zoryan Kharandiuk, Tetiana Shpyrka, Iryna Voronchak, Taras Shatan, Anastasia-Bohdana |
Affiliation: | Lviv Polytechnic National University Nestle Ukraine LLC Czech Academy of Sciences |
Bibliographic description (Ukraine): | low temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts / Roman Nebesnyi, Volodymyr Ivasiv, Zoryan Pikh, Tetiana Kharandiuk, Iryna Shpyrka, Taras Voronchak, Anastasia-Bohdana Shatan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 38–45. |
Bibliographic description (International): | low temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts / Roman Nebesnyi, Volodymyr Ivasiv, Zoryan Pikh, Tetiana Kharandiuk, Iryna Shpyrka, Taras Voronchak, Anastasia-Bohdana Shatan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 38–45. |
Is part of: | Chemistry & Chemical Technology, 1 (13), 2019 |
Issue: | 1 |
Issue Date: | 28-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | акрилова кислота ненасичені аль-дегіди Se-органічні каталізатори окиснення пероксид водню acrylic acid unsaturated aldehydes Seorganic catalysts oxidation hydrogen peroxide |
Number of pages: | 8 |
Page range: | 38-45 |
Start page: | 38 |
End page: | 45 |
Abstract: | Досліджено каталітичну активність Se-
вмісних органічних сполук, зокрема метилселенінової кислоти,
бензенселенінової кислоти, фенілселенолу та дифеніл-
диснленіду як потенційних каталізаторів окиснення ненаси-
чених альдегідів пероксидом водню. Встановлено, що всі
протестовані сполуки є активними в досліджуваній реакції і
характеризуються різною ефективністю залежно від
продукту реакції – акрилової кислоти чи метилакрилату.
Встановленi оптимальні умови здійснення процесу, ката-
лізатор та розчинник для одержання акрилової кислоти. Catalytic performance of Se-containing organic substances, namely methylseleninic acid, benzeneseleninic acid, phenylselenol and diphenyldiselenide, has been tested as potential catalysts for unsaturated aldehydes oxidation by hydrogen peroxide. All tested substances proved to be active in the acrolein oxidation reaction but showed different efficiency regarding used solvents and the products of reaction – acrylic acid or methyl acrylate. Optimal catalyst, reaction conditions and solvent for acrylic acid synthesis have been determined. |
URI: | https://ena.lpnu.ua/handle/ntb/46429 |
Copyright owner: | © Національний університет „Львівська політехніка“, 2019 © Nebesnyi R., Ivasiv V., Pikh Z., Kharandiuk T., Shpyrka I., Voronchak T., Shatan A.-B., 2019 |
URL for reference material: | https://doi.org/10.1016/j.crci.2016.02.009 https://doi.org/10.1016/S2095-4956(13)60087-X https://doi.org/10.1016/S0040-4039(99)02310-2 https://doi.org/10.1016/j.molliq.2017.07.105 https://doi.org/10.1016/j.apcata.2015.07.032 https://doi.org/10.1016/j.tetlet.2010.05.124 https://doi.org/10.1016/j.catcom.2011.04.025 https://doi.org/10.1016/S0040-4039(00)88577-9 https://doi.org/10.1039/B712171G https://doi.org/10.23939/chcht10.04.401 https://doi.org/10.1007/978-3-642-20699-3_11 https://doi.org/10.1021/jo00403a015 https://doi.org/10.1016/j.jcis.2017.09.034 https://doi.org/10.1007/s11051-016-3357-6 https://doi.org/10.1007/s10934-010-9383-3 https://doi.org/10.1016/S0040-4020(02)00248-X https://doi.org/10.1016/j.molcata.2005.06.018 https://doi.org/10.1016/0021-9517(86)90274-5 https://doi.org/10.1016/j.rser.2014.07.168 https://doi.org/10.1016/j.jiec.2016.03.050 |
References (Ukraine): | 1. Esmaeili A., Kakavand S.: Comptes Rendus Chimie, 2006, 19, 936. https://doi.org/10.1016/j.crci.2016.02.009 2. Zhou L., Donga B., Tang S. et al.: J. Energy Chem., 2013, 22, 659. https://doi.org/10.1016/S2095-4956(13)60087-X 3. Sato K., HyodoM., Takagi J. et al.: Tetrahedron Lett., 2000, 41, 1439. https://doi.org/10.1016/S0040-4039(99)02310-2 4. Balinge K., Khiratkar A., Bhagat P.: J. Mol. Liq., 2017, 242, 1085. https://doi.org/10.1016/j.molliq.2017.07.105 5. Singh S., Patel A., Prakashan P.: Appl. Catal. A., 2015, 505, 131. https://doi.org/10.1016/j.apcata.2015.07.032 6. Hajimohammadi M., Safari N., Mofakham H. et al.: Tetrahedron Lett., 2010, 51, 4061. https://doi.org/10.1016/j.tetlet.2010.05.124 7. Guo H., Kemell M., Al-Hunaiti A. et al.: Catal. Commun., 2011, 12, 1260. https://doi.org/10.1016/j.catcom.2011.04.025 8. Nwaukwa S., Keehn P.: Tetrahedron Lett., 1982, 23, 3131. https://doi.org/10.1016/S0040-4039(00)88577-9 9. Marsden C., Taarning E., Hansen D. et al.: Green Chem., 2008, 10, 168. https://doi.org/10.1039/B712171G 10. Pikh Z., Nebesnyi R., Ivasiv V. et al.: Chem. Chem. Technol., 2016, 10, 401. https://doi.org/10.23939/chcht10.04.401 11. Alberto E., Braga A.: Activation of Peroxides by Organoselenium Catalysts: A Synthetic and Biological Perspective. [in:] Woollins J., Laitinen R. (Eds.), Selenium and Tellurium Chemistry. Springer, Berlin, Heidelberg 2011, 251-283. https://doi.org/10.1007/978-3-642-20699-3_11 12. Pikh Z., Ivasiv V.: Chem. Chem. Technol., 2012, 6, 9. 13. Goti A., Cardona F.: Green Chem. React., 2008, 191. 14. Hori T., Sharpless K.: J. Org. Chem., 1978, 43, 1689. https://doi.org/10.1021/jo00403a015 15. Rangraz Y., Nemati F., Elhampour A.: J. Colloid Interf. Sci., 2018, 509, 485. https://doi.org/10.1016/j.jcis.2017.09.034 16. Guo L., Huang K., Liu H.: J. Nanopart. Res., 2016, 18, 74. https://doi.org/10.1007/s11051-016-3357-6 17. Narender N., Suresh Kumar Reddy K., KrishnaMohan K. et al.: J. PorousMater., 2011, 18, 337. https://doi.org/10.1007/s10934-010-9383-3 18. Brink G.-J., Vis J., Arends I. et al.: Tetrahedron, 2002, 58, 3977. https://doi.org/10.1016/S0040-4020(02)00248-X 19. Landi G., Lisi L., Russo G.: J. Mol. Catal., 2005, 239, 172. https://doi.org/10.1016/j.molcata.2005.06.018 20. TanimotoM., Nakamura D., Kawajiri T.: Pat. US 6545178, Publ. Apr. 8, 2003. 21. Mamoru A.: J. Catal., 1986, 101, 473. https://doi.org/10.1016/0021-9517(86)90274-5 22. Talebian-Kiakalaieh A., Amin N.A., Hezaveh H.: Renew. Sust. Energ. Rev., 2014, 40, 28. https://doi.org/10.1016/j.rser.2014.07.168 23. Liu R., Lyu S., Wang T.: J. Ind. Eng. Chem., 2016, 37, 354. https://doi.org/10.1016/j.jiec.2016.03.050 |
References (International): | 1. Esmaeili A., Kakavand S., Comptes Rendus Chimie, 2006, 19, 936. https://doi.org/10.1016/j.crci.2016.02.009 2. Zhou L., Donga B., Tang S. et al., J. Energy Chem., 2013, 22, 659. https://doi.org/10.1016/S2095-4956(13)60087-X 3. Sato K., HyodoM., Takagi J. et al., Tetrahedron Lett., 2000, 41, 1439. https://doi.org/10.1016/S0040-4039(99)02310-2 4. Balinge K., Khiratkar A., Bhagat P., J. Mol. Liq., 2017, 242, 1085. https://doi.org/10.1016/j.molliq.2017.07.105 5. Singh S., Patel A., Prakashan P., Appl. Catal. A., 2015, 505, 131. https://doi.org/10.1016/j.apcata.2015.07.032 6. Hajimohammadi M., Safari N., Mofakham H. et al., Tetrahedron Lett., 2010, 51, 4061. https://doi.org/10.1016/j.tetlet.2010.05.124 7. Guo H., Kemell M., Al-Hunaiti A. et al., Catal. Commun., 2011, 12, 1260. https://doi.org/10.1016/j.catcom.2011.04.025 8. Nwaukwa S., Keehn P., Tetrahedron Lett., 1982, 23, 3131. https://doi.org/10.1016/S0040-4039(00)88577-9 9. Marsden C., Taarning E., Hansen D. et al., Green Chem., 2008, 10, 168. https://doi.org/10.1039/B712171G 10. Pikh Z., Nebesnyi R., Ivasiv V. et al., Chem. Chem. Technol., 2016, 10, 401. https://doi.org/10.23939/chcht10.04.401 11. Alberto E., Braga A., Activation of Peroxides by Organoselenium Catalysts: A Synthetic and Biological Perspective. [in:] Woollins J., Laitinen R. (Eds.), Selenium and Tellurium Chemistry. Springer, Berlin, Heidelberg 2011, 251-283. https://doi.org/10.1007/978-3-642-20699-3_11 12. Pikh Z., Ivasiv V., Chem. Chem. Technol., 2012, 6, 9. 13. Goti A., Cardona F., Green Chem. React., 2008, 191. 14. Hori T., Sharpless K., J. Org. Chem., 1978, 43, 1689. https://doi.org/10.1021/jo00403a015 15. Rangraz Y., Nemati F., Elhampour A., J. Colloid Interf. Sci., 2018, 509, 485. https://doi.org/10.1016/j.jcis.2017.09.034 16. Guo L., Huang K., Liu H., J. Nanopart. Res., 2016, 18, 74. https://doi.org/10.1007/s11051-016-3357-6 17. Narender N., Suresh Kumar Reddy K., KrishnaMohan K. et al., J. PorousMater., 2011, 18, 337. https://doi.org/10.1007/s10934-010-9383-3 18. Brink G.-J., Vis J., Arends I. et al., Tetrahedron, 2002, 58, 3977. https://doi.org/10.1016/S0040-4020(02)00248-X 19. Landi G., Lisi L., Russo G., J. Mol. Catal., 2005, 239, 172. https://doi.org/10.1016/j.molcata.2005.06.018 20. TanimotoM., Nakamura D., Kawajiri T., Pat. US 6545178, Publ. Apr. 8, 2003. 21. Mamoru A., J. Catal., 1986, 101, 473. https://doi.org/10.1016/0021-9517(86)90274-5 22. Talebian-Kiakalaieh A., Amin N.A., Hezaveh H., Renew. Sust. Energ. Rev., 2014, 40, 28. https://doi.org/10.1016/j.rser.2014.07.168 23. Liu R., Lyu S., Wang T., J. Ind. Eng. Chem., 2016, 37, 354. https://doi.org/10.1016/j.jiec.2016.03.050 |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 1 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v13n1_Nebesnyi_R-low_temperature_acrolein_38-45.pdf | 638.85 kB | Adobe PDF | View/Open | |
2019v13n1_Nebesnyi_R-low_temperature_acrolein_38-45__COVER.png | 511.95 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.