Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46429
Title: low temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts
Other Titles: Низькотемпературне окиснення акролеїну до акрилової кислоти пероксидом водню на Se-органічних каталізаторах
Authors: Nebesnyi, Roman
Ivasiv, Volodymyr
Pikh, Zoryan
Kharandiuk, Tetiana
Shpyrka, Iryna
Voronchak, Taras
Shatan, Anastasia-Bohdana
Affiliation: Lviv Polytechnic National University
Nestle Ukraine LLC
Czech Academy of Sciences
Bibliographic description (Ukraine): low temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts / Roman Nebesnyi, Volodymyr Ivasiv, Zoryan Pikh, Tetiana Kharandiuk, Iryna Shpyrka, Taras Voronchak, Anastasia-Bohdana Shatan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 38–45.
Bibliographic description (International): low temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts / Roman Nebesnyi, Volodymyr Ivasiv, Zoryan Pikh, Tetiana Kharandiuk, Iryna Shpyrka, Taras Voronchak, Anastasia-Bohdana Shatan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 38–45.
Is part of: Chemistry & Chemical Technology, 1 (13), 2019
Issue: 1
Issue Date: 28-Feb-2019
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
Keywords: акрилова кислота
ненасичені аль-дегіди
Se-органічні каталізатори
окиснення
пероксид водню
acrylic acid
unsaturated aldehydes
Seorganic catalysts
oxidation
hydrogen peroxide
Number of pages: 8
Page range: 38-45
Start page: 38
End page: 45
Abstract: Досліджено каталітичну активність Se- вмісних органічних сполук, зокрема метилселенінової кислоти, бензенселенінової кислоти, фенілселенолу та дифеніл- диснленіду як потенційних каталізаторів окиснення ненаси- чених альдегідів пероксидом водню. Встановлено, що всі протестовані сполуки є активними в досліджуваній реакції і характеризуються різною ефективністю залежно від продукту реакції – акрилової кислоти чи метилакрилату. Встановленi оптимальні умови здійснення процесу, ката- лізатор та розчинник для одержання акрилової кислоти.
Catalytic performance of Se-containing organic substances, namely methylseleninic acid, benzeneseleninic acid, phenylselenol and diphenyldiselenide, has been tested as potential catalysts for unsaturated aldehydes oxidation by hydrogen peroxide. All tested substances proved to be active in the acrolein oxidation reaction but showed different efficiency regarding used solvents and the products of reaction – acrylic acid or methyl acrylate. Optimal catalyst, reaction conditions and solvent for acrylic acid synthesis have been determined.
URI: https://ena.lpnu.ua/handle/ntb/46429
Copyright owner: © Національний університет „Львівська політехніка“, 2019
© Nebesnyi R., Ivasiv V., Pikh Z., Kharandiuk T., Shpyrka I., Voronchak T., Shatan A.-B., 2019
URL for reference material: https://doi.org/10.1016/j.crci.2016.02.009
https://doi.org/10.1016/S2095-4956(13)60087-X
https://doi.org/10.1016/S0040-4039(99)02310-2
https://doi.org/10.1016/j.molliq.2017.07.105
https://doi.org/10.1016/j.apcata.2015.07.032
https://doi.org/10.1016/j.tetlet.2010.05.124
https://doi.org/10.1016/j.catcom.2011.04.025
https://doi.org/10.1016/S0040-4039(00)88577-9
https://doi.org/10.1039/B712171G
https://doi.org/10.23939/chcht10.04.401
https://doi.org/10.1007/978-3-642-20699-3_11
https://doi.org/10.1021/jo00403a015
https://doi.org/10.1016/j.jcis.2017.09.034
https://doi.org/10.1007/s11051-016-3357-6
https://doi.org/10.1007/s10934-010-9383-3
https://doi.org/10.1016/S0040-4020(02)00248-X
https://doi.org/10.1016/j.molcata.2005.06.018
https://doi.org/10.1016/0021-9517(86)90274-5
https://doi.org/10.1016/j.rser.2014.07.168
https://doi.org/10.1016/j.jiec.2016.03.050
References (Ukraine): 1. Esmaeili A., Kakavand S.: Comptes Rendus Chimie, 2006, 19, 936. https://doi.org/10.1016/j.crci.2016.02.009
2. Zhou L., Donga B., Tang S. et al.: J. Energy Chem., 2013, 22, 659. https://doi.org/10.1016/S2095-4956(13)60087-X
3. Sato K., HyodoM., Takagi J. et al.: Tetrahedron Lett., 2000, 41, 1439. https://doi.org/10.1016/S0040-4039(99)02310-2
4. Balinge K., Khiratkar A., Bhagat P.: J. Mol. Liq., 2017, 242, 1085. https://doi.org/10.1016/j.molliq.2017.07.105
5. Singh S., Patel A., Prakashan P.: Appl. Catal. A., 2015, 505, 131. https://doi.org/10.1016/j.apcata.2015.07.032
6. Hajimohammadi M., Safari N., Mofakham H. et al.: Tetrahedron Lett., 2010, 51, 4061. https://doi.org/10.1016/j.tetlet.2010.05.124
7. Guo H., Kemell M., Al-Hunaiti A. et al.: Catal. Commun., 2011, 12, 1260. https://doi.org/10.1016/j.catcom.2011.04.025
8. Nwaukwa S., Keehn P.: Tetrahedron Lett., 1982, 23, 3131. https://doi.org/10.1016/S0040-4039(00)88577-9
9. Marsden C., Taarning E., Hansen D. et al.: Green Chem., 2008, 10, 168. https://doi.org/10.1039/B712171G
10. Pikh Z., Nebesnyi R., Ivasiv V. et al.: Chem. Chem. Technol., 2016, 10, 401. https://doi.org/10.23939/chcht10.04.401
11. Alberto E., Braga A.: Activation of Peroxides by Organoselenium Catalysts: A Synthetic and Biological Perspective. [in:] Woollins J., Laitinen R. (Eds.), Selenium and Tellurium Chemistry. Springer, Berlin, Heidelberg 2011, 251-283. https://doi.org/10.1007/978-3-642-20699-3_11
12. Pikh Z., Ivasiv V.: Chem. Chem. Technol., 2012, 6, 9.
13. Goti A., Cardona F.: Green Chem. React., 2008, 191.
14. Hori T., Sharpless K.: J. Org. Chem., 1978, 43, 1689. https://doi.org/10.1021/jo00403a015
15. Rangraz Y., Nemati F., Elhampour A.: J. Colloid Interf. Sci., 2018, 509, 485. https://doi.org/10.1016/j.jcis.2017.09.034
16. Guo L., Huang K., Liu H.: J. Nanopart. Res., 2016, 18, 74. https://doi.org/10.1007/s11051-016-3357-6
17. Narender N., Suresh Kumar Reddy K., KrishnaMohan K. et al.: J. PorousMater., 2011, 18, 337. https://doi.org/10.1007/s10934-010-9383-3
18. Brink G.-J., Vis J., Arends I. et al.: Tetrahedron, 2002, 58, 3977. https://doi.org/10.1016/S0040-4020(02)00248-X
19. Landi G., Lisi L., Russo G.: J. Mol. Catal., 2005, 239, 172. https://doi.org/10.1016/j.molcata.2005.06.018
20. TanimotoM., Nakamura D., Kawajiri T.: Pat. US 6545178, Publ. Apr. 8, 2003.
21. Mamoru A.: J. Catal., 1986, 101, 473. https://doi.org/10.1016/0021-9517(86)90274-5
22. Talebian-Kiakalaieh A., Amin N.A., Hezaveh H.: Renew. Sust. Energ. Rev., 2014, 40, 28. https://doi.org/10.1016/j.rser.2014.07.168
23. Liu R., Lyu S., Wang T.: J. Ind. Eng. Chem., 2016, 37, 354. https://doi.org/10.1016/j.jiec.2016.03.050
References (International): 1. Esmaeili A., Kakavand S., Comptes Rendus Chimie, 2006, 19, 936. https://doi.org/10.1016/j.crci.2016.02.009
2. Zhou L., Donga B., Tang S. et al., J. Energy Chem., 2013, 22, 659. https://doi.org/10.1016/S2095-4956(13)60087-X
3. Sato K., HyodoM., Takagi J. et al., Tetrahedron Lett., 2000, 41, 1439. https://doi.org/10.1016/S0040-4039(99)02310-2
4. Balinge K., Khiratkar A., Bhagat P., J. Mol. Liq., 2017, 242, 1085. https://doi.org/10.1016/j.molliq.2017.07.105
5. Singh S., Patel A., Prakashan P., Appl. Catal. A., 2015, 505, 131. https://doi.org/10.1016/j.apcata.2015.07.032
6. Hajimohammadi M., Safari N., Mofakham H. et al., Tetrahedron Lett., 2010, 51, 4061. https://doi.org/10.1016/j.tetlet.2010.05.124
7. Guo H., Kemell M., Al-Hunaiti A. et al., Catal. Commun., 2011, 12, 1260. https://doi.org/10.1016/j.catcom.2011.04.025
8. Nwaukwa S., Keehn P., Tetrahedron Lett., 1982, 23, 3131. https://doi.org/10.1016/S0040-4039(00)88577-9
9. Marsden C., Taarning E., Hansen D. et al., Green Chem., 2008, 10, 168. https://doi.org/10.1039/B712171G
10. Pikh Z., Nebesnyi R., Ivasiv V. et al., Chem. Chem. Technol., 2016, 10, 401. https://doi.org/10.23939/chcht10.04.401
11. Alberto E., Braga A., Activation of Peroxides by Organoselenium Catalysts: A Synthetic and Biological Perspective. [in:] Woollins J., Laitinen R. (Eds.), Selenium and Tellurium Chemistry. Springer, Berlin, Heidelberg 2011, 251-283. https://doi.org/10.1007/978-3-642-20699-3_11
12. Pikh Z., Ivasiv V., Chem. Chem. Technol., 2012, 6, 9.
13. Goti A., Cardona F., Green Chem. React., 2008, 191.
14. Hori T., Sharpless K., J. Org. Chem., 1978, 43, 1689. https://doi.org/10.1021/jo00403a015
15. Rangraz Y., Nemati F., Elhampour A., J. Colloid Interf. Sci., 2018, 509, 485. https://doi.org/10.1016/j.jcis.2017.09.034
16. Guo L., Huang K., Liu H., J. Nanopart. Res., 2016, 18, 74. https://doi.org/10.1007/s11051-016-3357-6
17. Narender N., Suresh Kumar Reddy K., KrishnaMohan K. et al., J. PorousMater., 2011, 18, 337. https://doi.org/10.1007/s10934-010-9383-3
18. Brink G.-J., Vis J., Arends I. et al., Tetrahedron, 2002, 58, 3977. https://doi.org/10.1016/S0040-4020(02)00248-X
19. Landi G., Lisi L., Russo G., J. Mol. Catal., 2005, 239, 172. https://doi.org/10.1016/j.molcata.2005.06.018
20. TanimotoM., Nakamura D., Kawajiri T., Pat. US 6545178, Publ. Apr. 8, 2003.
21. Mamoru A., J. Catal., 1986, 101, 473. https://doi.org/10.1016/0021-9517(86)90274-5
22. Talebian-Kiakalaieh A., Amin N.A., Hezaveh H., Renew. Sust. Energ. Rev., 2014, 40, 28. https://doi.org/10.1016/j.rser.2014.07.168
23. Liu R., Lyu S., Wang T., J. Ind. Eng. Chem., 2016, 37, 354. https://doi.org/10.1016/j.jiec.2016.03.050
Content type: Article
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 1

Files in This Item:
File Description SizeFormat 
2019v13n1_Nebesnyi_R-low_temperature_acrolein_38-45.pdf638.85 kBAdobe PDFView/Open
2019v13n1_Nebesnyi_R-low_temperature_acrolein_38-45__COVER.png511.95 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.