Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46429
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNebesnyi, Roman-
dc.contributor.authorIvasiv, Volodymyr-
dc.contributor.authorPikh, Zoryan-
dc.contributor.authorKharandiuk, Tetiana-
dc.contributor.authorShpyrka, Iryna-
dc.contributor.authorVoronchak, Taras-
dc.contributor.authorShatan, Anastasia-Bohdana-
dc.date.accessioned2020-03-02T10:50:17Z-
dc.date.available2020-03-02T10:50:17Z-
dc.date.created2019-02-28-
dc.date.issued2019-02-28-
dc.identifier.citationlow temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts / Roman Nebesnyi, Volodymyr Ivasiv, Zoryan Pikh, Tetiana Kharandiuk, Iryna Shpyrka, Taras Voronchak, Anastasia-Bohdana Shatan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 38–45.-
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46429-
dc.description.abstractДосліджено каталітичну активність Se- вмісних органічних сполук, зокрема метилселенінової кислоти, бензенселенінової кислоти, фенілселенолу та дифеніл- диснленіду як потенційних каталізаторів окиснення ненаси- чених альдегідів пероксидом водню. Встановлено, що всі протестовані сполуки є активними в досліджуваній реакції і характеризуються різною ефективністю залежно від продукту реакції – акрилової кислоти чи метилакрилату. Встановленi оптимальні умови здійснення процесу, ката- лізатор та розчинник для одержання акрилової кислоти.-
dc.description.abstractCatalytic performance of Se-containing organic substances, namely methylseleninic acid, benzeneseleninic acid, phenylselenol and diphenyldiselenide, has been tested as potential catalysts for unsaturated aldehydes oxidation by hydrogen peroxide. All tested substances proved to be active in the acrolein oxidation reaction but showed different efficiency regarding used solvents and the products of reaction – acrylic acid or methyl acrylate. Optimal catalyst, reaction conditions and solvent for acrylic acid synthesis have been determined.-
dc.format.extent38-45-
dc.language.isoen-
dc.publisherВидавництво Львівської політехніки-
dc.publisherLviv Politechnic Publishing House-
dc.relation.ispartofChemistry & Chemical Technology, 1 (13), 2019-
dc.relation.urihttps://doi.org/10.1016/j.crci.2016.02.009-
dc.relation.urihttps://doi.org/10.1016/S2095-4956(13)60087-X-
dc.relation.urihttps://doi.org/10.1016/S0040-4039(99)02310-2-
dc.relation.urihttps://doi.org/10.1016/j.molliq.2017.07.105-
dc.relation.urihttps://doi.org/10.1016/j.apcata.2015.07.032-
dc.relation.urihttps://doi.org/10.1016/j.tetlet.2010.05.124-
dc.relation.urihttps://doi.org/10.1016/j.catcom.2011.04.025-
dc.relation.urihttps://doi.org/10.1016/S0040-4039(00)88577-9-
dc.relation.urihttps://doi.org/10.1039/B712171G-
dc.relation.urihttps://doi.org/10.23939/chcht10.04.401-
dc.relation.urihttps://doi.org/10.1007/978-3-642-20699-3_11-
dc.relation.urihttps://doi.org/10.1021/jo00403a015-
dc.relation.urihttps://doi.org/10.1016/j.jcis.2017.09.034-
dc.relation.urihttps://doi.org/10.1007/s11051-016-3357-6-
dc.relation.urihttps://doi.org/10.1007/s10934-010-9383-3-
dc.relation.urihttps://doi.org/10.1016/S0040-4020(02)00248-X-
dc.relation.urihttps://doi.org/10.1016/j.molcata.2005.06.018-
dc.relation.urihttps://doi.org/10.1016/0021-9517(86)90274-5-
dc.relation.urihttps://doi.org/10.1016/j.rser.2014.07.168-
dc.relation.urihttps://doi.org/10.1016/j.jiec.2016.03.050-
dc.subjectакрилова кислота-
dc.subjectненасичені аль-дегіди-
dc.subjectSe-органічні каталізатори-
dc.subjectокиснення-
dc.subjectпероксид водню-
dc.subjectacrylic acid-
dc.subjectunsaturated aldehydes-
dc.subjectSeorganic catalysts-
dc.subjectoxidation-
dc.subjecthydrogen peroxide-
dc.titlelow temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts-
dc.title.alternativeНизькотемпературне окиснення акролеїну до акрилової кислоти пероксидом водню на Se-органічних каталізаторах-
dc.typeArticle-
dc.rights.holder© Національний університет „Львівська політехніка“, 2019-
dc.rights.holder© Nebesnyi R., Ivasiv V., Pikh Z., Kharandiuk T., Shpyrka I., Voronchak T., Shatan A.-B., 2019-
dc.contributor.affiliationLviv Polytechnic National University-
dc.contributor.affiliationNestle Ukraine LLC-
dc.contributor.affiliationCzech Academy of Sciences-
dc.format.pages8-
dc.identifier.citationenlow temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts / Roman Nebesnyi, Volodymyr Ivasiv, Zoryan Pikh, Tetiana Kharandiuk, Iryna Shpyrka, Taras Voronchak, Anastasia-Bohdana Shatan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 38–45.-
dc.relation.references1. Esmaeili A., Kakavand S.: Comptes Rendus Chimie, 2006, 19, 936. https://doi.org/10.1016/j.crci.2016.02.009-
dc.relation.references2. Zhou L., Donga B., Tang S. et al.: J. Energy Chem., 2013, 22, 659. https://doi.org/10.1016/S2095-4956(13)60087-X-
dc.relation.references3. Sato K., HyodoM., Takagi J. et al.: Tetrahedron Lett., 2000, 41, 1439. https://doi.org/10.1016/S0040-4039(99)02310-2-
dc.relation.references4. Balinge K., Khiratkar A., Bhagat P.: J. Mol. Liq., 2017, 242, 1085. https://doi.org/10.1016/j.molliq.2017.07.105-
dc.relation.references5. Singh S., Patel A., Prakashan P.: Appl. Catal. A., 2015, 505, 131. https://doi.org/10.1016/j.apcata.2015.07.032-
dc.relation.references6. Hajimohammadi M., Safari N., Mofakham H. et al.: Tetrahedron Lett., 2010, 51, 4061. https://doi.org/10.1016/j.tetlet.2010.05.124-
dc.relation.references7. Guo H., Kemell M., Al-Hunaiti A. et al.: Catal. Commun., 2011, 12, 1260. https://doi.org/10.1016/j.catcom.2011.04.025-
dc.relation.references8. Nwaukwa S., Keehn P.: Tetrahedron Lett., 1982, 23, 3131. https://doi.org/10.1016/S0040-4039(00)88577-9-
dc.relation.references9. Marsden C., Taarning E., Hansen D. et al.: Green Chem., 2008, 10, 168. https://doi.org/10.1039/B712171G-
dc.relation.references10. Pikh Z., Nebesnyi R., Ivasiv V. et al.: Chem. Chem. Technol., 2016, 10, 401. https://doi.org/10.23939/chcht10.04.401-
dc.relation.references11. Alberto E., Braga A.: Activation of Peroxides by Organoselenium Catalysts: A Synthetic and Biological Perspective. [in:] Woollins J., Laitinen R. (Eds.), Selenium and Tellurium Chemistry. Springer, Berlin, Heidelberg 2011, 251-283. https://doi.org/10.1007/978-3-642-20699-3_11-
dc.relation.references12. Pikh Z., Ivasiv V.: Chem. Chem. Technol., 2012, 6, 9.-
dc.relation.references13. Goti A., Cardona F.: Green Chem. React., 2008, 191.-
dc.relation.references14. Hori T., Sharpless K.: J. Org. Chem., 1978, 43, 1689. https://doi.org/10.1021/jo00403a015-
dc.relation.references15. Rangraz Y., Nemati F., Elhampour A.: J. Colloid Interf. Sci., 2018, 509, 485. https://doi.org/10.1016/j.jcis.2017.09.034-
dc.relation.references16. Guo L., Huang K., Liu H.: J. Nanopart. Res., 2016, 18, 74. https://doi.org/10.1007/s11051-016-3357-6-
dc.relation.references17. Narender N., Suresh Kumar Reddy K., KrishnaMohan K. et al.: J. PorousMater., 2011, 18, 337. https://doi.org/10.1007/s10934-010-9383-3-
dc.relation.references18. Brink G.-J., Vis J., Arends I. et al.: Tetrahedron, 2002, 58, 3977. https://doi.org/10.1016/S0040-4020(02)00248-X-
dc.relation.references19. Landi G., Lisi L., Russo G.: J. Mol. Catal., 2005, 239, 172. https://doi.org/10.1016/j.molcata.2005.06.018-
dc.relation.references20. TanimotoM., Nakamura D., Kawajiri T.: Pat. US 6545178, Publ. Apr. 8, 2003.-
dc.relation.references21. Mamoru A.: J. Catal., 1986, 101, 473. https://doi.org/10.1016/0021-9517(86)90274-5-
dc.relation.references22. Talebian-Kiakalaieh A., Amin N.A., Hezaveh H.: Renew. Sust. Energ. Rev., 2014, 40, 28. https://doi.org/10.1016/j.rser.2014.07.168-
dc.relation.references23. Liu R., Lyu S., Wang T.: J. Ind. Eng. Chem., 2016, 37, 354. https://doi.org/10.1016/j.jiec.2016.03.050-
dc.relation.referencesen1. Esmaeili A., Kakavand S., Comptes Rendus Chimie, 2006, 19, 936. https://doi.org/10.1016/j.crci.2016.02.009-
dc.relation.referencesen2. Zhou L., Donga B., Tang S. et al., J. Energy Chem., 2013, 22, 659. https://doi.org/10.1016/S2095-4956(13)60087-X-
dc.relation.referencesen3. Sato K., HyodoM., Takagi J. et al., Tetrahedron Lett., 2000, 41, 1439. https://doi.org/10.1016/S0040-4039(99)02310-2-
dc.relation.referencesen4. Balinge K., Khiratkar A., Bhagat P., J. Mol. Liq., 2017, 242, 1085. https://doi.org/10.1016/j.molliq.2017.07.105-
dc.relation.referencesen5. Singh S., Patel A., Prakashan P., Appl. Catal. A., 2015, 505, 131. https://doi.org/10.1016/j.apcata.2015.07.032-
dc.relation.referencesen6. Hajimohammadi M., Safari N., Mofakham H. et al., Tetrahedron Lett., 2010, 51, 4061. https://doi.org/10.1016/j.tetlet.2010.05.124-
dc.relation.referencesen7. Guo H., Kemell M., Al-Hunaiti A. et al., Catal. Commun., 2011, 12, 1260. https://doi.org/10.1016/j.catcom.2011.04.025-
dc.relation.referencesen8. Nwaukwa S., Keehn P., Tetrahedron Lett., 1982, 23, 3131. https://doi.org/10.1016/S0040-4039(00)88577-9-
dc.relation.referencesen9. Marsden C., Taarning E., Hansen D. et al., Green Chem., 2008, 10, 168. https://doi.org/10.1039/B712171G-
dc.relation.referencesen10. Pikh Z., Nebesnyi R., Ivasiv V. et al., Chem. Chem. Technol., 2016, 10, 401. https://doi.org/10.23939/chcht10.04.401-
dc.relation.referencesen11. Alberto E., Braga A., Activation of Peroxides by Organoselenium Catalysts: A Synthetic and Biological Perspective. [in:] Woollins J., Laitinen R. (Eds.), Selenium and Tellurium Chemistry. Springer, Berlin, Heidelberg 2011, 251-283. https://doi.org/10.1007/978-3-642-20699-3_11-
dc.relation.referencesen12. Pikh Z., Ivasiv V., Chem. Chem. Technol., 2012, 6, 9.-
dc.relation.referencesen13. Goti A., Cardona F., Green Chem. React., 2008, 191.-
dc.relation.referencesen14. Hori T., Sharpless K., J. Org. Chem., 1978, 43, 1689. https://doi.org/10.1021/jo00403a015-
dc.relation.referencesen15. Rangraz Y., Nemati F., Elhampour A., J. Colloid Interf. Sci., 2018, 509, 485. https://doi.org/10.1016/j.jcis.2017.09.034-
dc.relation.referencesen16. Guo L., Huang K., Liu H., J. Nanopart. Res., 2016, 18, 74. https://doi.org/10.1007/s11051-016-3357-6-
dc.relation.referencesen17. Narender N., Suresh Kumar Reddy K., KrishnaMohan K. et al., J. PorousMater., 2011, 18, 337. https://doi.org/10.1007/s10934-010-9383-3-
dc.relation.referencesen18. Brink G.-J., Vis J., Arends I. et al., Tetrahedron, 2002, 58, 3977. https://doi.org/10.1016/S0040-4020(02)00248-X-
dc.relation.referencesen19. Landi G., Lisi L., Russo G., J. Mol. Catal., 2005, 239, 172. https://doi.org/10.1016/j.molcata.2005.06.018-
dc.relation.referencesen20. TanimotoM., Nakamura D., Kawajiri T., Pat. US 6545178, Publ. Apr. 8, 2003.-
dc.relation.referencesen21. Mamoru A., J. Catal., 1986, 101, 473. https://doi.org/10.1016/0021-9517(86)90274-5-
dc.relation.referencesen22. Talebian-Kiakalaieh A., Amin N.A., Hezaveh H., Renew. Sust. Energ. Rev., 2014, 40, 28. https://doi.org/10.1016/j.rser.2014.07.168-
dc.relation.referencesen23. Liu R., Lyu S., Wang T., J. Ind. Eng. Chem., 2016, 37, 354. https://doi.org/10.1016/j.jiec.2016.03.050-
dc.citation.issue1-
dc.citation.spage38-
dc.citation.epage45-
dc.coverage.placenameЛьвів-
dc.coverage.placenameLviv-
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 1

Files in This Item:
File Description SizeFormat 
2019v13n1_Nebesnyi_R-low_temperature_acrolein_38-45.pdf638.85 kBAdobe PDFView/Open
2019v13n1_Nebesnyi_R-low_temperature_acrolein_38-45__COVER.png511.95 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.