DC Field | Value | Language |
dc.contributor.author | Nebesnyi, Roman | - |
dc.contributor.author | Ivasiv, Volodymyr | - |
dc.contributor.author | Pikh, Zoryan | - |
dc.contributor.author | Kharandiuk, Tetiana | - |
dc.contributor.author | Shpyrka, Iryna | - |
dc.contributor.author | Voronchak, Taras | - |
dc.contributor.author | Shatan, Anastasia-Bohdana | - |
dc.date.accessioned | 2020-03-02T10:50:17Z | - |
dc.date.available | 2020-03-02T10:50:17Z | - |
dc.date.created | 2019-02-28 | - |
dc.date.issued | 2019-02-28 | - |
dc.identifier.citation | low temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts / Roman Nebesnyi, Volodymyr Ivasiv, Zoryan Pikh, Tetiana Kharandiuk, Iryna Shpyrka, Taras Voronchak, Anastasia-Bohdana Shatan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 38–45. | - |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46429 | - |
dc.description.abstract | Досліджено каталітичну активність Se-
вмісних органічних сполук, зокрема метилселенінової кислоти,
бензенселенінової кислоти, фенілселенолу та дифеніл-
диснленіду як потенційних каталізаторів окиснення ненаси-
чених альдегідів пероксидом водню. Встановлено, що всі
протестовані сполуки є активними в досліджуваній реакції і
характеризуються різною ефективністю залежно від
продукту реакції – акрилової кислоти чи метилакрилату.
Встановленi оптимальні умови здійснення процесу, ката-
лізатор та розчинник для одержання акрилової кислоти. | - |
dc.description.abstract | Catalytic performance of Se-containing organic
substances, namely methylseleninic acid, benzeneseleninic
acid, phenylselenol and diphenyldiselenide, has
been tested as potential catalysts for unsaturated aldehydes
oxidation by hydrogen peroxide. All tested substances
proved to be active in the acrolein oxidation reaction but
showed different efficiency regarding used solvents and
the products of reaction – acrylic acid or methyl acrylate.
Optimal catalyst, reaction conditions and solvent for
acrylic acid synthesis have been determined. | - |
dc.format.extent | 38-45 | - |
dc.language.iso | en | - |
dc.publisher | Видавництво Львівської політехніки | - |
dc.publisher | Lviv Politechnic Publishing House | - |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (13), 2019 | - |
dc.relation.uri | https://doi.org/10.1016/j.crci.2016.02.009 | - |
dc.relation.uri | https://doi.org/10.1016/S2095-4956(13)60087-X | - |
dc.relation.uri | https://doi.org/10.1016/S0040-4039(99)02310-2 | - |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2017.07.105 | - |
dc.relation.uri | https://doi.org/10.1016/j.apcata.2015.07.032 | - |
dc.relation.uri | https://doi.org/10.1016/j.tetlet.2010.05.124 | - |
dc.relation.uri | https://doi.org/10.1016/j.catcom.2011.04.025 | - |
dc.relation.uri | https://doi.org/10.1016/S0040-4039(00)88577-9 | - |
dc.relation.uri | https://doi.org/10.1039/B712171G | - |
dc.relation.uri | https://doi.org/10.23939/chcht10.04.401 | - |
dc.relation.uri | https://doi.org/10.1007/978-3-642-20699-3_11 | - |
dc.relation.uri | https://doi.org/10.1021/jo00403a015 | - |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2017.09.034 | - |
dc.relation.uri | https://doi.org/10.1007/s11051-016-3357-6 | - |
dc.relation.uri | https://doi.org/10.1007/s10934-010-9383-3 | - |
dc.relation.uri | https://doi.org/10.1016/S0040-4020(02)00248-X | - |
dc.relation.uri | https://doi.org/10.1016/j.molcata.2005.06.018 | - |
dc.relation.uri | https://doi.org/10.1016/0021-9517(86)90274-5 | - |
dc.relation.uri | https://doi.org/10.1016/j.rser.2014.07.168 | - |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2016.03.050 | - |
dc.subject | акрилова кислота | - |
dc.subject | ненасичені аль-дегіди | - |
dc.subject | Se-органічні каталізатори | - |
dc.subject | окиснення | - |
dc.subject | пероксид водню | - |
dc.subject | acrylic acid | - |
dc.subject | unsaturated aldehydes | - |
dc.subject | Seorganic catalysts | - |
dc.subject | oxidation | - |
dc.subject | hydrogen peroxide | - |
dc.title | low temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts | - |
dc.title.alternative | Низькотемпературне окиснення акролеїну до акрилової кислоти пероксидом водню на Se-органічних каталізаторах | - |
dc.type | Article | - |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | - |
dc.rights.holder | © Nebesnyi R., Ivasiv V., Pikh Z., Kharandiuk T., Shpyrka I., Voronchak T., Shatan A.-B., 2019 | - |
dc.contributor.affiliation | Lviv Polytechnic National University | - |
dc.contributor.affiliation | Nestle Ukraine LLC | - |
dc.contributor.affiliation | Czech Academy of Sciences | - |
dc.format.pages | 8 | - |
dc.identifier.citationen | low temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts / Roman Nebesnyi, Volodymyr Ivasiv, Zoryan Pikh, Tetiana Kharandiuk, Iryna Shpyrka, Taras Voronchak, Anastasia-Bohdana Shatan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 38–45. | - |
dc.relation.references | 1. Esmaeili A., Kakavand S.: Comptes Rendus Chimie, 2006, 19, 936. https://doi.org/10.1016/j.crci.2016.02.009 | - |
dc.relation.references | 2. Zhou L., Donga B., Tang S. et al.: J. Energy Chem., 2013, 22, 659. https://doi.org/10.1016/S2095-4956(13)60087-X | - |
dc.relation.references | 3. Sato K., HyodoM., Takagi J. et al.: Tetrahedron Lett., 2000, 41, 1439. https://doi.org/10.1016/S0040-4039(99)02310-2 | - |
dc.relation.references | 4. Balinge K., Khiratkar A., Bhagat P.: J. Mol. Liq., 2017, 242, 1085. https://doi.org/10.1016/j.molliq.2017.07.105 | - |
dc.relation.references | 5. Singh S., Patel A., Prakashan P.: Appl. Catal. A., 2015, 505, 131. https://doi.org/10.1016/j.apcata.2015.07.032 | - |
dc.relation.references | 6. Hajimohammadi M., Safari N., Mofakham H. et al.: Tetrahedron Lett., 2010, 51, 4061. https://doi.org/10.1016/j.tetlet.2010.05.124 | - |
dc.relation.references | 7. Guo H., Kemell M., Al-Hunaiti A. et al.: Catal. Commun., 2011, 12, 1260. https://doi.org/10.1016/j.catcom.2011.04.025 | - |
dc.relation.references | 8. Nwaukwa S., Keehn P.: Tetrahedron Lett., 1982, 23, 3131. https://doi.org/10.1016/S0040-4039(00)88577-9 | - |
dc.relation.references | 9. Marsden C., Taarning E., Hansen D. et al.: Green Chem., 2008, 10, 168. https://doi.org/10.1039/B712171G | - |
dc.relation.references | 10. Pikh Z., Nebesnyi R., Ivasiv V. et al.: Chem. Chem. Technol., 2016, 10, 401. https://doi.org/10.23939/chcht10.04.401 | - |
dc.relation.references | 11. Alberto E., Braga A.: Activation of Peroxides by Organoselenium Catalysts: A Synthetic and Biological Perspective. [in:] Woollins J., Laitinen R. (Eds.), Selenium and Tellurium Chemistry. Springer, Berlin, Heidelberg 2011, 251-283. https://doi.org/10.1007/978-3-642-20699-3_11 | - |
dc.relation.references | 12. Pikh Z., Ivasiv V.: Chem. Chem. Technol., 2012, 6, 9. | - |
dc.relation.references | 13. Goti A., Cardona F.: Green Chem. React., 2008, 191. | - |
dc.relation.references | 14. Hori T., Sharpless K.: J. Org. Chem., 1978, 43, 1689. https://doi.org/10.1021/jo00403a015 | - |
dc.relation.references | 15. Rangraz Y., Nemati F., Elhampour A.: J. Colloid Interf. Sci., 2018, 509, 485. https://doi.org/10.1016/j.jcis.2017.09.034 | - |
dc.relation.references | 16. Guo L., Huang K., Liu H.: J. Nanopart. Res., 2016, 18, 74. https://doi.org/10.1007/s11051-016-3357-6 | - |
dc.relation.references | 17. Narender N., Suresh Kumar Reddy K., KrishnaMohan K. et al.: J. PorousMater., 2011, 18, 337. https://doi.org/10.1007/s10934-010-9383-3 | - |
dc.relation.references | 18. Brink G.-J., Vis J., Arends I. et al.: Tetrahedron, 2002, 58, 3977. https://doi.org/10.1016/S0040-4020(02)00248-X | - |
dc.relation.references | 19. Landi G., Lisi L., Russo G.: J. Mol. Catal., 2005, 239, 172. https://doi.org/10.1016/j.molcata.2005.06.018 | - |
dc.relation.references | 20. TanimotoM., Nakamura D., Kawajiri T.: Pat. US 6545178, Publ. Apr. 8, 2003. | - |
dc.relation.references | 21. Mamoru A.: J. Catal., 1986, 101, 473. https://doi.org/10.1016/0021-9517(86)90274-5 | - |
dc.relation.references | 22. Talebian-Kiakalaieh A., Amin N.A., Hezaveh H.: Renew. Sust. Energ. Rev., 2014, 40, 28. https://doi.org/10.1016/j.rser.2014.07.168 | - |
dc.relation.references | 23. Liu R., Lyu S., Wang T.: J. Ind. Eng. Chem., 2016, 37, 354. https://doi.org/10.1016/j.jiec.2016.03.050 | - |
dc.relation.referencesen | 1. Esmaeili A., Kakavand S., Comptes Rendus Chimie, 2006, 19, 936. https://doi.org/10.1016/j.crci.2016.02.009 | - |
dc.relation.referencesen | 2. Zhou L., Donga B., Tang S. et al., J. Energy Chem., 2013, 22, 659. https://doi.org/10.1016/S2095-4956(13)60087-X | - |
dc.relation.referencesen | 3. Sato K., HyodoM., Takagi J. et al., Tetrahedron Lett., 2000, 41, 1439. https://doi.org/10.1016/S0040-4039(99)02310-2 | - |
dc.relation.referencesen | 4. Balinge K., Khiratkar A., Bhagat P., J. Mol. Liq., 2017, 242, 1085. https://doi.org/10.1016/j.molliq.2017.07.105 | - |
dc.relation.referencesen | 5. Singh S., Patel A., Prakashan P., Appl. Catal. A., 2015, 505, 131. https://doi.org/10.1016/j.apcata.2015.07.032 | - |
dc.relation.referencesen | 6. Hajimohammadi M., Safari N., Mofakham H. et al., Tetrahedron Lett., 2010, 51, 4061. https://doi.org/10.1016/j.tetlet.2010.05.124 | - |
dc.relation.referencesen | 7. Guo H., Kemell M., Al-Hunaiti A. et al., Catal. Commun., 2011, 12, 1260. https://doi.org/10.1016/j.catcom.2011.04.025 | - |
dc.relation.referencesen | 8. Nwaukwa S., Keehn P., Tetrahedron Lett., 1982, 23, 3131. https://doi.org/10.1016/S0040-4039(00)88577-9 | - |
dc.relation.referencesen | 9. Marsden C., Taarning E., Hansen D. et al., Green Chem., 2008, 10, 168. https://doi.org/10.1039/B712171G | - |
dc.relation.referencesen | 10. Pikh Z., Nebesnyi R., Ivasiv V. et al., Chem. Chem. Technol., 2016, 10, 401. https://doi.org/10.23939/chcht10.04.401 | - |
dc.relation.referencesen | 11. Alberto E., Braga A., Activation of Peroxides by Organoselenium Catalysts: A Synthetic and Biological Perspective. [in:] Woollins J., Laitinen R. (Eds.), Selenium and Tellurium Chemistry. Springer, Berlin, Heidelberg 2011, 251-283. https://doi.org/10.1007/978-3-642-20699-3_11 | - |
dc.relation.referencesen | 12. Pikh Z., Ivasiv V., Chem. Chem. Technol., 2012, 6, 9. | - |
dc.relation.referencesen | 13. Goti A., Cardona F., Green Chem. React., 2008, 191. | - |
dc.relation.referencesen | 14. Hori T., Sharpless K., J. Org. Chem., 1978, 43, 1689. https://doi.org/10.1021/jo00403a015 | - |
dc.relation.referencesen | 15. Rangraz Y., Nemati F., Elhampour A., J. Colloid Interf. Sci., 2018, 509, 485. https://doi.org/10.1016/j.jcis.2017.09.034 | - |
dc.relation.referencesen | 16. Guo L., Huang K., Liu H., J. Nanopart. Res., 2016, 18, 74. https://doi.org/10.1007/s11051-016-3357-6 | - |
dc.relation.referencesen | 17. Narender N., Suresh Kumar Reddy K., KrishnaMohan K. et al., J. PorousMater., 2011, 18, 337. https://doi.org/10.1007/s10934-010-9383-3 | - |
dc.relation.referencesen | 18. Brink G.-J., Vis J., Arends I. et al., Tetrahedron, 2002, 58, 3977. https://doi.org/10.1016/S0040-4020(02)00248-X | - |
dc.relation.referencesen | 19. Landi G., Lisi L., Russo G., J. Mol. Catal., 2005, 239, 172. https://doi.org/10.1016/j.molcata.2005.06.018 | - |
dc.relation.referencesen | 20. TanimotoM., Nakamura D., Kawajiri T., Pat. US 6545178, Publ. Apr. 8, 2003. | - |
dc.relation.referencesen | 21. Mamoru A., J. Catal., 1986, 101, 473. https://doi.org/10.1016/0021-9517(86)90274-5 | - |
dc.relation.referencesen | 22. Talebian-Kiakalaieh A., Amin N.A., Hezaveh H., Renew. Sust. Energ. Rev., 2014, 40, 28. https://doi.org/10.1016/j.rser.2014.07.168 | - |
dc.relation.referencesen | 23. Liu R., Lyu S., Wang T., J. Ind. Eng. Chem., 2016, 37, 354. https://doi.org/10.1016/j.jiec.2016.03.050 | - |
dc.citation.issue | 1 | - |
dc.citation.spage | 38 | - |
dc.citation.epage | 45 | - |
dc.coverage.placename | Львів | - |
dc.coverage.placename | Lviv | - |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 1
|