https://oldena.lpnu.ua/handle/ntb/46425
Title: | Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine |
Other Titles: | Обчислювальний молекулярний докінг, волтаметричні та спектроскопічні дослідження взаємодії ДНК з 9N-(ферроценілметил)аденіном |
Authors: | Lanez, Elhafnaoui Bechki, Lazhar Lanez, Touhami |
Affiliation: | University of El Oued University of Ouargla |
Bibliographic description (Ukraine): | Lanez E. Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine / Elhafnaoui Lanez, Lazhar Bechki, Touhami Lanez // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 11–17. |
Bibliographic description (International): | Lanez E. Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine / Elhafnaoui Lanez, Lazhar Bechki, Touhami Lanez // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 11–17. |
Is part of: | Chemistry & Chemical Technology, 1 (13), 2019 |
Issue: | 1 |
Issue Date: | 28-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | ДНК енергія вільного зв’язування AutoDock розмір ділянки зв’язування коефіцієнт дифузії DNA free binding energy AutoDock size of binding site diffusion coefficient |
Number of pages: | 7 |
Page range: | 11-17 |
Start page: | 11 |
End page: | 17 |
Abstract: | З використанням методів циклічної
вольтамперометрії та електронної спектроскопії за одна-
кових умов проведені вимірювання вільної енергії 9N-(ферро-
ценілметил)аденину (ФMA) з дволанцюговою ДНК. Отримані
результати підтверджені обчислювальним молекулярним
докінгом. Показано, що док-результати добре узгоджуються з
експериментальними даними і що ліганд ФMA поміщений у
невелику борозенку спіралі ДНК. The binding free energy of 9N-(ferrocenylmethyl) adenine (FMA) with double-stranded deoxyribonucleic acid (DNA) was measured in solution using cyclic voltammetry and electronic spectroscopy (UV-Vis) techniques under similar conditions. The obtained results were confirmed by computational molecular docking. The docking studies yield good approximation with experimental data and showed that the ligand FMA is placed in the minor groove of DNA. |
URI: | https://ena.lpnu.ua/handle/ntb/46425 |
Copyright owner: | © Національний університет „Львівська політехніка“, 2019 © Lanez E., Bechki L., Lanez T., 2019 |
URL for reference material: | https://doi.org/10.1038/1681039b0 https://doi.org/10.1039/JR9520000632 https://doi.org/10.1021/ja01128a527 https://doi.org/10.1016/j.jorganchem.2013.08.043 https://doi.org/10.1039/C2DT31570J https://doi.org/10.1039/C1NJ20172G https://doi.org/ https://doi.org/10.1248/cpb.55.796 https://doi.org/10.1016/S0960-894X(00)00120-7 https://doi.org/10.4172/1948-5956.1000154 https://doi.org/10.1016/j.corsci.2007.09.002 https://doi.org/10.1016/j.jorganchem.2014.05.038 https://doi.org/10.1021/cr0101510 https://doi.org/10.1002/aoc.1202 https://doi.org/10.1016/S0020-1693(00)83359-9 https://doi.org/10.1021/om00102a023 https://doi.org/10.1016/S1387-1609(00)00118-3 https://doi.org/10.1039/A905168F https://doi.org/10.1039/DT9960004115 http://dx.doi.org/10.1007/s00044-012-0311-8 https://doi.org/10.1071/CH12570 https://doi.org/10.1016/j.jpba.2012.06.005 https://doi.org/10.1016/j.jelechem.2014.01.007 https://doi.org/10.1039/JR9580000656 https://doi.org/10.1002/aoc.1362 https://doi.org/10.1006/bbrc.2000.2707 https://doi.org/10.1007/s00216-004-2797-5 https://doi.org/10.1016/S0003-2670(99)00292-5 https://doi.org/10.1016/j.bmc.2005.06.023 https://doi.org/10.1038/nsb836 https://doi.org/10.1016/j.jinorgbio.2009.12.008 https://doi.org/10.1063/1.464913 https://doi.org/10.1016/0009-2614(89)87234-3 https://doi.org/10.1002/jcc.21256 https://doi.org/10.1080/17415993.2017.1391811 |
References (Ukraine): | 1. Kealy T., Pauson P.: Nature, 1951, 168, 1039. https://doi.org/10.1038/1681039b0 2. Miller S., Tebboth J., Tremaine J.: J. Chem. Soc., 1952, 632. https://doi.org/10.1039/JR9520000632 3. Wilkinson G., RosenblumM., WhitingM. et al.: J. Am. Chem. Soc., 1952, 74, 2125. https://doi.org/10.1021/ja01128a527 4. Xian-Feng H., Ling-Zhu W., Long T. et al.: J. Organomet. Chem., 2014, 749, 157. https://doi.org/10.1016/j.jorganchem.2013.08.043 5. Lal B., Badshah A., Altaf A. et al.: Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/C2DT31570J 6. Ornelas C.: New J. Chem., 2011, 35, 1973. https://doi.org/10.1039/C1NJ20172G 7. Kondapi A., Satyanarayana N., Saikrishna A.: Arch. Biochem. Biophys., 2006, 450, 123. https://doi.org/ 10.1016/j.abb.2006.04.003 8. StrugaM., Kossakowski J., Kedzierska E. et al.: Chem. Pharm. Bull., 2007, 55, 796. https://doi.org/10.1248/cpb.55.796 9. Biot B., Francois N., Maciejewski L. et al.: Bioorg. Med. Chem. Lett., 2000, 10, 839. https://doi.org/10.1016/S0960-894X(00)00120-7 10. Itoh T., Shirakami S., Ishida N. et al.: Bioorg. Med. Chem. Lett., 2000, 10, 1657. https://doi.org/ 10.1016/S0960-894X(00)00313-9 11. Swarts J., Vosloo T., Cronge S. et al.: Anticancer Res., 2008, 28, 2781. 12. Acevedo-Morantes C., Meléndez E., Singh P. et al.: J. Cancer. Sci. Ther., 2012, 4, 271. https://doi.org/10.4172/1948-5956.1000154 13. MoradM., Sarhan A.: Science, 2008, 50, 744. https://doi.org/10.1016/j.corsci.2007.09.002 14. Gupta S., Mourya P., SinghM. et al.: J. Organomet. Chem., 2014, 767, 136. https://doi.org/10.1016/j.jorganchem.2014.05.038 15. Van Staveren D., Metzler-Nolte N.: Chem. Rev., 2004, 104, 5931. https://doi.org/10.1021/cr0101510 16. FoudaM., Abd-Elzaher M., Abdelsamaia R. et al.: Appl. Organomet. Chem., 2007, 21, 613. https://doi.org/10.1002/aoc.1202 17. Lal B., Badshah A., Altaf A. et al.: Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/C2DT31570J 18. Scaria V., Furlani A., Longato B. et al.: Inorg. Chim. Acta, 1988, 153, 67. https://doi.org/10.1016/S0020-1693(00)83359-9 19. Neuse E., MeirimM., Blom N.: Organometallics, 1988, 7, 2562. https://doi.org/10.1021/om00102a023 20. Houlton A., Roberts R., Silver J.: J. Organomet. Chem., 1991, 418, 107. https://doi.org/10.1016/S1387-1609(00)00118-3 21. Houlton A., Christian J., Ashleigh E. et al.: J. Chem. Soc., Dalton Trans., 1999, 3229. https://doi.org/10.1039/A905168F 22. Price C., AslanogluM., Christian J. et al.: J. Chem. Soc., Dalton Trans., 1996, 4115. https://doi.org/10.1039/DT9960004115 23. Ali S., Badshah A., Ataf A.:Med. Chem Res., 2013, 22, 3154. http://dx.doi.org/10.1007/s00044-012-0311-8 24. Hussain R., Badshah A., Tahir M. et al.: Aust. J. Chem., 2013, 66, 626. https://doi.org/10.1071/CH12570 25. Jalali F., Dorraji P.: J. Pharm. Biomed. Anal., 2012, 70, 598. https://doi.org/10.1016/j.jpba.2012.06.005 26. Radi A., Eissa A., Nassef H.: J. Electroanal. Chem., 2014, 717, 24. https://doi.org/10.1016/j.jelechem.2014.01.007 27. Osgerby J., Pauson P.: J. Chem. Soc., 1958, 642, 656. https://doi.org/10.1039/JR9580000656 28. Snegur L., Yu S., Nekrasov N. et al.: Appl. Organomet. Chem., 2008, 22, 139. https://doi.org/10.1002/aoc.1362 29. Sambrook J., Fritsch E., Maniatis T.:Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbour Laboratory Press, New York 1989, 1626-1644. 30. Glasel J.: Biotechniques, 1995, 8, 62. 31. Vijayalakshmi R., Kanthimathi M., Subramanian V. et al.: Biochem. Biophys. Res. Commun., 2000, 271, 731. https://doi.org/10.1006/bbrc.2000.2707 32. Lu X., Zhu K., ZhangM. et al.: J. Biochem. Biophys. Met., 2002, 52, 189. 33. AslanogluM., Ayne G.: Anal. Bioanal. Chem., 2004, 380, 658. https://doi.org/10.1007/s00216-004-2797-5 34. Zhao G., Zhu J., Zhang J. et al.: Anal. Chim. Acta., 1999, 394, 337. https://doi.org/10.1016/S0003-2670(99)00292-5 35. Atkins P.: Physical Chemistry. Oxford University Press, Oxford 1986, 263-265. 36. Xu Z., Bai G., Dong C.: Bioorg. Med. Chem., 2005, 13, 5694. https://doi.org/10.1016/j.bmc.2005.06.023 37. Ye H., Cande C., Stephanou N.: Nat. Struct. Mol. Biol., 2002, 9, 680. https://doi.org/10.1038/nsb836 38. Li D., Huang F., Chen G. et al.: J. Inorg. Biochem., 2010, 104, 431. https://doi.org/10.1016/j.jinorgbio.2009.12.008 39. Brett C., Brett A.: Electrochemistry: Principles, Methods and Applications, Oxford Science University Publications, Oxford 1993, 256-276. 40. NieM., Wang Y., Li H.: Pol. J. Chem., 1997, 71, 816. 41. FrischM., Trucks G., Schlegel H. et al.: Gaussian 09. Gaussian Inc., Wallingford CT, 2009. 42. Becke A.: J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913 43. Miehlich B., Savin A., Stoll H. et al.: Chem. Phys. Lett., 1989, 157, 200. https://doi.org/10.1016/0009-2614(89)87234-3 44. Morris G., Ruth H., LindstromW. et al.:J. Comput. Chem., 2009, 30, 2785. https://doi.org/10.1002/jcc.21256 45. Berman H., Westbrook J., Feng Z. et al.: Nucl. Acids Res., 2000, 28, 235. 46. Lanez T., Benaicha H., Lanez E. et al.: J. Sulfur Chem., 2018, 39, 76. https://doi.org/10.1080/17415993.2017.1391811 |
References (International): | 1. Kealy T., Pauson P., Nature, 1951, 168, 1039. https://doi.org/10.1038/1681039b0 2. Miller S., Tebboth J., Tremaine J., J. Chem. Soc., 1952, 632. https://doi.org/10.1039/JR9520000632 3. Wilkinson G., RosenblumM., WhitingM. et al., J. Am. Chem. Soc., 1952, 74, 2125. https://doi.org/10.1021/ja01128a527 4. Xian-Feng H., Ling-Zhu W., Long T. et al., J. Organomet. Chem., 2014, 749, 157. https://doi.org/10.1016/j.jorganchem.2013.08.043 5. Lal B., Badshah A., Altaf A. et al., Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/P.2DT31570J 6. Ornelas C., New J. Chem., 2011, 35, 1973. https://doi.org/10.1039/P.1NJ20172G 7. Kondapi A., Satyanarayana N., Saikrishna A., Arch. Biochem. Biophys., 2006, 450, 123. https://doi.org/ 10.1016/j.abb.2006.04.003 8. StrugaM., Kossakowski J., Kedzierska E. et al., Chem. Pharm. Bull., 2007, 55, 796. https://doi.org/10.1248/cpb.55.796 9. Biot B., Francois N., Maciejewski L. et al., Bioorg. Med. Chem. Lett., 2000, 10, 839. https://doi.org/10.1016/S0960-894X(00)00120-7 10. Itoh T., Shirakami S., Ishida N. et al., Bioorg. Med. Chem. Lett., 2000, 10, 1657. https://doi.org/ 10.1016/S0960-894X(00)00313-9 11. Swarts J., Vosloo T., Cronge S. et al., Anticancer Res., 2008, 28, 2781. 12. Acevedo-Morantes C., Meléndez E., Singh P. et al., J. Cancer. Sci. Ther., 2012, 4, 271. https://doi.org/10.4172/1948-5956.1000154 13. MoradM., Sarhan A., Science, 2008, 50, 744. https://doi.org/10.1016/j.corsci.2007.09.002 14. Gupta S., Mourya P., SinghM. et al., J. Organomet. Chem., 2014, 767, 136. https://doi.org/10.1016/j.jorganchem.2014.05.038 15. Van Staveren D., Metzler-Nolte N., Chem. Rev., 2004, 104, 5931. https://doi.org/10.1021/cr0101510 16. FoudaM., Abd-Elzaher M., Abdelsamaia R. et al., Appl. Organomet. Chem., 2007, 21, 613. https://doi.org/10.1002/aoc.1202 17. Lal B., Badshah A., Altaf A. et al., Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/P.2DT31570J 18. Scaria V., Furlani A., Longato B. et al., Inorg. Chim. Acta, 1988, 153, 67. https://doi.org/10.1016/S0020-1693(00)83359-9 19. Neuse E., MeirimM., Blom N., Organometallics, 1988, 7, 2562. https://doi.org/10.1021/om00102a023 20. Houlton A., Roberts R., Silver J., J. Organomet. Chem., 1991, 418, 107. https://doi.org/10.1016/S1387-1609(00)00118-3 21. Houlton A., Christian J., Ashleigh E. et al., J. Chem. Soc., Dalton Trans., 1999, 3229. https://doi.org/10.1039/A905168F 22. Price C., AslanogluM., Christian J. et al., J. Chem. Soc., Dalton Trans., 1996, 4115. https://doi.org/10.1039/DT9960004115 23. Ali S., Badshah A., Ataf A.:Med. Chem Res., 2013, 22, 3154. http://dx.doi.org/10.1007/s00044-012-0311-8 24. Hussain R., Badshah A., Tahir M. et al., Aust. J. Chem., 2013, 66, 626. https://doi.org/10.1071/CH12570 25. Jalali F., Dorraji P., J. Pharm. Biomed. Anal., 2012, 70, 598. https://doi.org/10.1016/j.jpba.2012.06.005 26. Radi A., Eissa A., Nassef H., J. Electroanal. Chem., 2014, 717, 24. https://doi.org/10.1016/j.jelechem.2014.01.007 27. Osgerby J., Pauson P., J. Chem. Soc., 1958, 642, 656. https://doi.org/10.1039/JR9580000656 28. Snegur L., Yu S., Nekrasov N. et al., Appl. Organomet. Chem., 2008, 22, 139. https://doi.org/10.1002/aoc.1362 29. Sambrook J., Fritsch E., Maniatis T.:Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbour Laboratory Press, New York 1989, 1626-1644. 30. Glasel J., Biotechniques, 1995, 8, 62. 31. Vijayalakshmi R., Kanthimathi M., Subramanian V. et al., Biochem. Biophys. Res. Commun., 2000, 271, 731. https://doi.org/10.1006/bbrc.2000.2707 32. Lu X., Zhu K., ZhangM. et al., J. Biochem. Biophys. Met., 2002, 52, 189. 33. AslanogluM., Ayne G., Anal. Bioanal. Chem., 2004, 380, 658. https://doi.org/10.1007/s00216-004-2797-5 34. Zhao G., Zhu J., Zhang J. et al., Anal. Chim. Acta., 1999, 394, 337. https://doi.org/10.1016/S0003-2670(99)00292-5 35. Atkins P., Physical Chemistry. Oxford University Press, Oxford 1986, 263-265. 36. Xu Z., Bai G., Dong C., Bioorg. Med. Chem., 2005, 13, 5694. https://doi.org/10.1016/j.bmc.2005.06.023 37. Ye H., Cande C., Stephanou N., Nat. Struct. Mol. Biol., 2002, 9, 680. https://doi.org/10.1038/nsb836 38. Li D., Huang F., Chen G. et al., J. Inorg. Biochem., 2010, 104, 431. https://doi.org/10.1016/j.jinorgbio.2009.12.008 39. Brett C., Brett A., Electrochemistry: Principles, Methods and Applications, Oxford Science University Publications, Oxford 1993, 256-276. 40. NieM., Wang Y., Li H., Pol. J. Chem., 1997, 71, 816. 41. FrischM., Trucks G., Schlegel H. et al., Gaussian 09. Gaussian Inc., Wallingford CT, 2009. 42. Becke A., J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913 43. Miehlich B., Savin A., Stoll H. et al., Chem. Phys. Lett., 1989, 157, 200. https://doi.org/10.1016/0009-2614(89)87234-3 44. Morris G., Ruth H., LindstromW. et al.:J. Comput. Chem., 2009, 30, 2785. https://doi.org/10.1002/jcc.21256 45. Berman H., Westbrook J., Feng Z. et al., Nucl. Acids Res., 2000, 28, 235. 46. Lanez T., Benaicha H., Lanez E. et al., J. Sulfur Chem., 2018, 39, 76. https://doi.org/10.1080/17415993.2017.1391811 |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 1 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v13n1_Lanez_E-Computational_molecular_docking_11-17.pdf | 1.19 MB | Adobe PDF | View/Open | |
2019v13n1_Lanez_E-Computational_molecular_docking_11-17__COVER.png | 522.42 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.