Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46425
Title: Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine
Other Titles: Обчислювальний молекулярний докінг, волтаметричні та спектроскопічні дослідження взаємодії ДНК з 9N-(ферроценілметил)аденіном
Authors: Lanez, Elhafnaoui
Bechki, Lazhar
Lanez, Touhami
Affiliation: University of El Oued
University of Ouargla
Bibliographic description (Ukraine): Lanez E. Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine / Elhafnaoui Lanez, Lazhar Bechki, Touhami Lanez // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 11–17.
Bibliographic description (International): Lanez E. Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine / Elhafnaoui Lanez, Lazhar Bechki, Touhami Lanez // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 11–17.
Is part of: Chemistry & Chemical Technology, 1 (13), 2019
Issue: 1
Issue Date: 28-Feb-2019
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
Keywords: ДНК
енергія вільного зв’язування
AutoDock
розмір ділянки зв’язування
коефіцієнт дифузії
DNA
free binding energy
AutoDock
size of binding site
diffusion coefficient
Number of pages: 7
Page range: 11-17
Start page: 11
End page: 17
Abstract: З використанням методів циклічної вольтамперометрії та електронної спектроскопії за одна- кових умов проведені вимірювання вільної енергії 9N-(ферро- ценілметил)аденину (ФMA) з дволанцюговою ДНК. Отримані результати підтверджені обчислювальним молекулярним докінгом. Показано, що док-результати добре узгоджуються з експериментальними даними і що ліганд ФMA поміщений у невелику борозенку спіралі ДНК.
The binding free energy of 9N-(ferrocenylmethyl) adenine (FMA) with double-stranded deoxyribonucleic acid (DNA) was measured in solution using cyclic voltammetry and electronic spectroscopy (UV-Vis) techniques under similar conditions. The obtained results were confirmed by computational molecular docking. The docking studies yield good approximation with experimental data and showed that the ligand FMA is placed in the minor groove of DNA.
URI: https://ena.lpnu.ua/handle/ntb/46425
Copyright owner: © Національний університет „Львівська політехніка“, 2019
© Lanez E., Bechki L., Lanez T., 2019
URL for reference material: https://doi.org/10.1038/1681039b0
https://doi.org/10.1039/JR9520000632
https://doi.org/10.1021/ja01128a527
https://doi.org/10.1016/j.jorganchem.2013.08.043
https://doi.org/10.1039/C2DT31570J
https://doi.org/10.1039/C1NJ20172G
https://doi.org/
https://doi.org/10.1248/cpb.55.796
https://doi.org/10.1016/S0960-894X(00)00120-7
https://doi.org/10.4172/1948-5956.1000154
https://doi.org/10.1016/j.corsci.2007.09.002
https://doi.org/10.1016/j.jorganchem.2014.05.038
https://doi.org/10.1021/cr0101510
https://doi.org/10.1002/aoc.1202
https://doi.org/10.1016/S0020-1693(00)83359-9
https://doi.org/10.1021/om00102a023
https://doi.org/10.1016/S1387-1609(00)00118-3
https://doi.org/10.1039/A905168F
https://doi.org/10.1039/DT9960004115
http://dx.doi.org/10.1007/s00044-012-0311-8
https://doi.org/10.1071/CH12570
https://doi.org/10.1016/j.jpba.2012.06.005
https://doi.org/10.1016/j.jelechem.2014.01.007
https://doi.org/10.1039/JR9580000656
https://doi.org/10.1002/aoc.1362
https://doi.org/10.1006/bbrc.2000.2707
https://doi.org/10.1007/s00216-004-2797-5
https://doi.org/10.1016/S0003-2670(99)00292-5
https://doi.org/10.1016/j.bmc.2005.06.023
https://doi.org/10.1038/nsb836
https://doi.org/10.1016/j.jinorgbio.2009.12.008
https://doi.org/10.1063/1.464913
https://doi.org/10.1016/0009-2614(89)87234-3
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1080/17415993.2017.1391811
References (Ukraine): 1. Kealy T., Pauson P.: Nature, 1951, 168, 1039. https://doi.org/10.1038/1681039b0
2. Miller S., Tebboth J., Tremaine J.: J. Chem. Soc., 1952, 632. https://doi.org/10.1039/JR9520000632
3. Wilkinson G., RosenblumM., WhitingM. et al.: J. Am. Chem. Soc., 1952, 74, 2125. https://doi.org/10.1021/ja01128a527
4. Xian-Feng H., Ling-Zhu W., Long T. et al.: J. Organomet. Chem., 2014, 749, 157. https://doi.org/10.1016/j.jorganchem.2013.08.043
5. Lal B., Badshah A., Altaf A. et al.: Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/C2DT31570J
6. Ornelas C.: New J. Chem., 2011, 35, 1973. https://doi.org/10.1039/C1NJ20172G
7. Kondapi A., Satyanarayana N., Saikrishna A.: Arch. Biochem. Biophys., 2006, 450, 123. https://doi.org/ 10.1016/j.abb.2006.04.003
8. StrugaM., Kossakowski J., Kedzierska E. et al.: Chem. Pharm. Bull., 2007, 55, 796. https://doi.org/10.1248/cpb.55.796
9. Biot B., Francois N., Maciejewski L. et al.: Bioorg. Med. Chem. Lett., 2000, 10, 839. https://doi.org/10.1016/S0960-894X(00)00120-7
10. Itoh T., Shirakami S., Ishida N. et al.: Bioorg. Med. Chem. Lett., 2000, 10, 1657. https://doi.org/ 10.1016/S0960-894X(00)00313-9
11. Swarts J., Vosloo T., Cronge S. et al.: Anticancer Res., 2008, 28, 2781.
12. Acevedo-Morantes C., Meléndez E., Singh P. et al.: J. Cancer. Sci. Ther., 2012, 4, 271. https://doi.org/10.4172/1948-5956.1000154
13. MoradM., Sarhan A.: Science, 2008, 50, 744. https://doi.org/10.1016/j.corsci.2007.09.002
14. Gupta S., Mourya P., SinghM. et al.: J. Organomet. Chem., 2014, 767, 136. https://doi.org/10.1016/j.jorganchem.2014.05.038
15. Van Staveren D., Metzler-Nolte N.: Chem. Rev., 2004, 104, 5931. https://doi.org/10.1021/cr0101510
16. FoudaM., Abd-Elzaher M., Abdelsamaia R. et al.: Appl. Organomet. Chem., 2007, 21, 613. https://doi.org/10.1002/aoc.1202
17. Lal B., Badshah A., Altaf A. et al.: Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/C2DT31570J
18. Scaria V., Furlani A., Longato B. et al.: Inorg. Chim. Acta, 1988, 153, 67. https://doi.org/10.1016/S0020-1693(00)83359-9
19. Neuse E., MeirimM., Blom N.: Organometallics, 1988, 7, 2562. https://doi.org/10.1021/om00102a023
20. Houlton A., Roberts R., Silver J.: J. Organomet. Chem., 1991, 418, 107. https://doi.org/10.1016/S1387-1609(00)00118-3
21. Houlton A., Christian J., Ashleigh E. et al.: J. Chem. Soc., Dalton Trans., 1999, 3229. https://doi.org/10.1039/A905168F
22. Price C., AslanogluM., Christian J. et al.: J. Chem. Soc., Dalton Trans., 1996, 4115. https://doi.org/10.1039/DT9960004115
23. Ali S., Badshah A., Ataf A.:Med. Chem Res., 2013, 22, 3154. http://dx.doi.org/10.1007/s00044-012-0311-8
24. Hussain R., Badshah A., Tahir M. et al.: Aust. J. Chem., 2013, 66, 626. https://doi.org/10.1071/CH12570
25. Jalali F., Dorraji P.: J. Pharm. Biomed. Anal., 2012, 70, 598. https://doi.org/10.1016/j.jpba.2012.06.005
26. Radi A., Eissa A., Nassef H.: J. Electroanal. Chem., 2014, 717, 24. https://doi.org/10.1016/j.jelechem.2014.01.007
27. Osgerby J., Pauson P.: J. Chem. Soc., 1958, 642, 656. https://doi.org/10.1039/JR9580000656
28. Snegur L., Yu S., Nekrasov N. et al.: Appl. Organomet. Chem., 2008, 22, 139. https://doi.org/10.1002/aoc.1362
29. Sambrook J., Fritsch E., Maniatis T.:Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbour Laboratory Press, New York 1989, 1626-1644.
30. Glasel J.: Biotechniques, 1995, 8, 62.
31. Vijayalakshmi R., Kanthimathi M., Subramanian V. et al.: Biochem. Biophys. Res. Commun., 2000, 271, 731. https://doi.org/10.1006/bbrc.2000.2707
32. Lu X., Zhu K., ZhangM. et al.: J. Biochem. Biophys. Met., 2002, 52, 189.
33. AslanogluM., Ayne G.: Anal. Bioanal. Chem., 2004, 380, 658. https://doi.org/10.1007/s00216-004-2797-5
34. Zhao G., Zhu J., Zhang J. et al.: Anal. Chim. Acta., 1999, 394, 337. https://doi.org/10.1016/S0003-2670(99)00292-5
35. Atkins P.: Physical Chemistry. Oxford University Press, Oxford 1986, 263-265.
36. Xu Z., Bai G., Dong C.: Bioorg. Med. Chem., 2005, 13, 5694. https://doi.org/10.1016/j.bmc.2005.06.023
37. Ye H., Cande C., Stephanou N.: Nat. Struct. Mol. Biol., 2002, 9, 680. https://doi.org/10.1038/nsb836
38. Li D., Huang F., Chen G. et al.: J. Inorg. Biochem., 2010, 104, 431. https://doi.org/10.1016/j.jinorgbio.2009.12.008
39. Brett C., Brett A.: Electrochemistry: Principles, Methods and Applications, Oxford Science University Publications, Oxford 1993, 256-276.
40. NieM., Wang Y., Li H.: Pol. J. Chem., 1997, 71, 816.
41. FrischM., Trucks G., Schlegel H. et al.: Gaussian 09. Gaussian Inc., Wallingford CT, 2009.
42. Becke A.: J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913
43. Miehlich B., Savin A., Stoll H. et al.: Chem. Phys. Lett., 1989, 157, 200. https://doi.org/10.1016/0009-2614(89)87234-3
44. Morris G., Ruth H., LindstromW. et al.:J. Comput. Chem., 2009, 30, 2785. https://doi.org/10.1002/jcc.21256
45. Berman H., Westbrook J., Feng Z. et al.: Nucl. Acids Res., 2000, 28, 235.
46. Lanez T., Benaicha H., Lanez E. et al.: J. Sulfur Chem., 2018, 39, 76. https://doi.org/10.1080/17415993.2017.1391811
References (International): 1. Kealy T., Pauson P., Nature, 1951, 168, 1039. https://doi.org/10.1038/1681039b0
2. Miller S., Tebboth J., Tremaine J., J. Chem. Soc., 1952, 632. https://doi.org/10.1039/JR9520000632
3. Wilkinson G., RosenblumM., WhitingM. et al., J. Am. Chem. Soc., 1952, 74, 2125. https://doi.org/10.1021/ja01128a527
4. Xian-Feng H., Ling-Zhu W., Long T. et al., J. Organomet. Chem., 2014, 749, 157. https://doi.org/10.1016/j.jorganchem.2013.08.043
5. Lal B., Badshah A., Altaf A. et al., Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/P.2DT31570J
6. Ornelas C., New J. Chem., 2011, 35, 1973. https://doi.org/10.1039/P.1NJ20172G
7. Kondapi A., Satyanarayana N., Saikrishna A., Arch. Biochem. Biophys., 2006, 450, 123. https://doi.org/ 10.1016/j.abb.2006.04.003
8. StrugaM., Kossakowski J., Kedzierska E. et al., Chem. Pharm. Bull., 2007, 55, 796. https://doi.org/10.1248/cpb.55.796
9. Biot B., Francois N., Maciejewski L. et al., Bioorg. Med. Chem. Lett., 2000, 10, 839. https://doi.org/10.1016/S0960-894X(00)00120-7
10. Itoh T., Shirakami S., Ishida N. et al., Bioorg. Med. Chem. Lett., 2000, 10, 1657. https://doi.org/ 10.1016/S0960-894X(00)00313-9
11. Swarts J., Vosloo T., Cronge S. et al., Anticancer Res., 2008, 28, 2781.
12. Acevedo-Morantes C., Meléndez E., Singh P. et al., J. Cancer. Sci. Ther., 2012, 4, 271. https://doi.org/10.4172/1948-5956.1000154
13. MoradM., Sarhan A., Science, 2008, 50, 744. https://doi.org/10.1016/j.corsci.2007.09.002
14. Gupta S., Mourya P., SinghM. et al., J. Organomet. Chem., 2014, 767, 136. https://doi.org/10.1016/j.jorganchem.2014.05.038
15. Van Staveren D., Metzler-Nolte N., Chem. Rev., 2004, 104, 5931. https://doi.org/10.1021/cr0101510
16. FoudaM., Abd-Elzaher M., Abdelsamaia R. et al., Appl. Organomet. Chem., 2007, 21, 613. https://doi.org/10.1002/aoc.1202
17. Lal B., Badshah A., Altaf A. et al., Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/P.2DT31570J
18. Scaria V., Furlani A., Longato B. et al., Inorg. Chim. Acta, 1988, 153, 67. https://doi.org/10.1016/S0020-1693(00)83359-9
19. Neuse E., MeirimM., Blom N., Organometallics, 1988, 7, 2562. https://doi.org/10.1021/om00102a023
20. Houlton A., Roberts R., Silver J., J. Organomet. Chem., 1991, 418, 107. https://doi.org/10.1016/S1387-1609(00)00118-3
21. Houlton A., Christian J., Ashleigh E. et al., J. Chem. Soc., Dalton Trans., 1999, 3229. https://doi.org/10.1039/A905168F
22. Price C., AslanogluM., Christian J. et al., J. Chem. Soc., Dalton Trans., 1996, 4115. https://doi.org/10.1039/DT9960004115
23. Ali S., Badshah A., Ataf A.:Med. Chem Res., 2013, 22, 3154. http://dx.doi.org/10.1007/s00044-012-0311-8
24. Hussain R., Badshah A., Tahir M. et al., Aust. J. Chem., 2013, 66, 626. https://doi.org/10.1071/CH12570
25. Jalali F., Dorraji P., J. Pharm. Biomed. Anal., 2012, 70, 598. https://doi.org/10.1016/j.jpba.2012.06.005
26. Radi A., Eissa A., Nassef H., J. Electroanal. Chem., 2014, 717, 24. https://doi.org/10.1016/j.jelechem.2014.01.007
27. Osgerby J., Pauson P., J. Chem. Soc., 1958, 642, 656. https://doi.org/10.1039/JR9580000656
28. Snegur L., Yu S., Nekrasov N. et al., Appl. Organomet. Chem., 2008, 22, 139. https://doi.org/10.1002/aoc.1362
29. Sambrook J., Fritsch E., Maniatis T.:Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbour Laboratory Press, New York 1989, 1626-1644.
30. Glasel J., Biotechniques, 1995, 8, 62.
31. Vijayalakshmi R., Kanthimathi M., Subramanian V. et al., Biochem. Biophys. Res. Commun., 2000, 271, 731. https://doi.org/10.1006/bbrc.2000.2707
32. Lu X., Zhu K., ZhangM. et al., J. Biochem. Biophys. Met., 2002, 52, 189.
33. AslanogluM., Ayne G., Anal. Bioanal. Chem., 2004, 380, 658. https://doi.org/10.1007/s00216-004-2797-5
34. Zhao G., Zhu J., Zhang J. et al., Anal. Chim. Acta., 1999, 394, 337. https://doi.org/10.1016/S0003-2670(99)00292-5
35. Atkins P., Physical Chemistry. Oxford University Press, Oxford 1986, 263-265.
36. Xu Z., Bai G., Dong C., Bioorg. Med. Chem., 2005, 13, 5694. https://doi.org/10.1016/j.bmc.2005.06.023
37. Ye H., Cande C., Stephanou N., Nat. Struct. Mol. Biol., 2002, 9, 680. https://doi.org/10.1038/nsb836
38. Li D., Huang F., Chen G. et al., J. Inorg. Biochem., 2010, 104, 431. https://doi.org/10.1016/j.jinorgbio.2009.12.008
39. Brett C., Brett A., Electrochemistry: Principles, Methods and Applications, Oxford Science University Publications, Oxford 1993, 256-276.
40. NieM., Wang Y., Li H., Pol. J. Chem., 1997, 71, 816.
41. FrischM., Trucks G., Schlegel H. et al., Gaussian 09. Gaussian Inc., Wallingford CT, 2009.
42. Becke A., J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913
43. Miehlich B., Savin A., Stoll H. et al., Chem. Phys. Lett., 1989, 157, 200. https://doi.org/10.1016/0009-2614(89)87234-3
44. Morris G., Ruth H., LindstromW. et al.:J. Comput. Chem., 2009, 30, 2785. https://doi.org/10.1002/jcc.21256
45. Berman H., Westbrook J., Feng Z. et al., Nucl. Acids Res., 2000, 28, 235.
46. Lanez T., Benaicha H., Lanez E. et al., J. Sulfur Chem., 2018, 39, 76. https://doi.org/10.1080/17415993.2017.1391811
Content type: Article
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 1

Files in This Item:
File Description SizeFormat 
2019v13n1_Lanez_E-Computational_molecular_docking_11-17.pdf1.19 MBAdobe PDFView/Open
2019v13n1_Lanez_E-Computational_molecular_docking_11-17__COVER.png522.42 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.