Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46425
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLanez, Elhafnaoui-
dc.contributor.authorBechki, Lazhar-
dc.contributor.authorLanez, Touhami-
dc.date.accessioned2020-03-02T10:50:15Z-
dc.date.available2020-03-02T10:50:15Z-
dc.date.created2019-02-28-
dc.date.issued2019-02-28-
dc.identifier.citationLanez E. Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine / Elhafnaoui Lanez, Lazhar Bechki, Touhami Lanez // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 11–17.-
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46425-
dc.description.abstractЗ використанням методів циклічної вольтамперометрії та електронної спектроскопії за одна- кових умов проведені вимірювання вільної енергії 9N-(ферро- ценілметил)аденину (ФMA) з дволанцюговою ДНК. Отримані результати підтверджені обчислювальним молекулярним докінгом. Показано, що док-результати добре узгоджуються з експериментальними даними і що ліганд ФMA поміщений у невелику борозенку спіралі ДНК.-
dc.description.abstractThe binding free energy of 9N-(ferrocenylmethyl) adenine (FMA) with double-stranded deoxyribonucleic acid (DNA) was measured in solution using cyclic voltammetry and electronic spectroscopy (UV-Vis) techniques under similar conditions. The obtained results were confirmed by computational molecular docking. The docking studies yield good approximation with experimental data and showed that the ligand FMA is placed in the minor groove of DNA.-
dc.format.extent11-17-
dc.language.isoen-
dc.publisherВидавництво Львівської політехніки-
dc.publisherLviv Politechnic Publishing House-
dc.relation.ispartofChemistry & Chemical Technology, 1 (13), 2019-
dc.relation.urihttps://doi.org/10.1038/1681039b0-
dc.relation.urihttps://doi.org/10.1039/JR9520000632-
dc.relation.urihttps://doi.org/10.1021/ja01128a527-
dc.relation.urihttps://doi.org/10.1016/j.jorganchem.2013.08.043-
dc.relation.urihttps://doi.org/10.1039/C2DT31570J-
dc.relation.urihttps://doi.org/10.1039/C1NJ20172G-
dc.relation.urihttps://doi.org/-
dc.relation.urihttps://doi.org/10.1248/cpb.55.796-
dc.relation.urihttps://doi.org/10.1016/S0960-894X(00)00120-7-
dc.relation.urihttps://doi.org/10.4172/1948-5956.1000154-
dc.relation.urihttps://doi.org/10.1016/j.corsci.2007.09.002-
dc.relation.urihttps://doi.org/10.1016/j.jorganchem.2014.05.038-
dc.relation.urihttps://doi.org/10.1021/cr0101510-
dc.relation.urihttps://doi.org/10.1002/aoc.1202-
dc.relation.urihttps://doi.org/10.1016/S0020-1693(00)83359-9-
dc.relation.urihttps://doi.org/10.1021/om00102a023-
dc.relation.urihttps://doi.org/10.1016/S1387-1609(00)00118-3-
dc.relation.urihttps://doi.org/10.1039/A905168F-
dc.relation.urihttps://doi.org/10.1039/DT9960004115-
dc.relation.urihttp://dx.doi.org/10.1007/s00044-012-0311-8-
dc.relation.urihttps://doi.org/10.1071/CH12570-
dc.relation.urihttps://doi.org/10.1016/j.jpba.2012.06.005-
dc.relation.urihttps://doi.org/10.1016/j.jelechem.2014.01.007-
dc.relation.urihttps://doi.org/10.1039/JR9580000656-
dc.relation.urihttps://doi.org/10.1002/aoc.1362-
dc.relation.urihttps://doi.org/10.1006/bbrc.2000.2707-
dc.relation.urihttps://doi.org/10.1007/s00216-004-2797-5-
dc.relation.urihttps://doi.org/10.1016/S0003-2670(99)00292-5-
dc.relation.urihttps://doi.org/10.1016/j.bmc.2005.06.023-
dc.relation.urihttps://doi.org/10.1038/nsb836-
dc.relation.urihttps://doi.org/10.1016/j.jinorgbio.2009.12.008-
dc.relation.urihttps://doi.org/10.1063/1.464913-
dc.relation.urihttps://doi.org/10.1016/0009-2614(89)87234-3-
dc.relation.urihttps://doi.org/10.1002/jcc.21256-
dc.relation.urihttps://doi.org/10.1080/17415993.2017.1391811-
dc.subjectДНК-
dc.subjectенергія вільного зв’язування-
dc.subjectAutoDock-
dc.subjectрозмір ділянки зв’язування-
dc.subjectкоефіцієнт дифузії-
dc.subjectDNA-
dc.subjectfree binding energy-
dc.subjectAutoDock-
dc.subjectsize of binding site-
dc.subjectdiffusion coefficient-
dc.titleComputational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine-
dc.title.alternativeОбчислювальний молекулярний докінг, волтаметричні та спектроскопічні дослідження взаємодії ДНК з 9N-(ферроценілметил)аденіном-
dc.typeArticle-
dc.rights.holder© Національний університет „Львівська політехніка“, 2019-
dc.rights.holder© Lanez E., Bechki L., Lanez T., 2019-
dc.contributor.affiliationUniversity of El Oued-
dc.contributor.affiliationUniversity of Ouargla-
dc.format.pages7-
dc.identifier.citationenLanez E. Computational molecular docking, voltammetric and spectroscopic DNA interaction studies of 9N-(ferrocenylmethyl)adenine / Elhafnaoui Lanez, Lazhar Bechki, Touhami Lanez // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 11–17.-
dc.relation.references1. Kealy T., Pauson P.: Nature, 1951, 168, 1039. https://doi.org/10.1038/1681039b0-
dc.relation.references2. Miller S., Tebboth J., Tremaine J.: J. Chem. Soc., 1952, 632. https://doi.org/10.1039/JR9520000632-
dc.relation.references3. Wilkinson G., RosenblumM., WhitingM. et al.: J. Am. Chem. Soc., 1952, 74, 2125. https://doi.org/10.1021/ja01128a527-
dc.relation.references4. Xian-Feng H., Ling-Zhu W., Long T. et al.: J. Organomet. Chem., 2014, 749, 157. https://doi.org/10.1016/j.jorganchem.2013.08.043-
dc.relation.references5. Lal B., Badshah A., Altaf A. et al.: Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/C2DT31570J-
dc.relation.references6. Ornelas C.: New J. Chem., 2011, 35, 1973. https://doi.org/10.1039/C1NJ20172G-
dc.relation.references7. Kondapi A., Satyanarayana N., Saikrishna A.: Arch. Biochem. Biophys., 2006, 450, 123. https://doi.org/ 10.1016/j.abb.2006.04.003-
dc.relation.references8. StrugaM., Kossakowski J., Kedzierska E. et al.: Chem. Pharm. Bull., 2007, 55, 796. https://doi.org/10.1248/cpb.55.796-
dc.relation.references9. Biot B., Francois N., Maciejewski L. et al.: Bioorg. Med. Chem. Lett., 2000, 10, 839. https://doi.org/10.1016/S0960-894X(00)00120-7-
dc.relation.references10. Itoh T., Shirakami S., Ishida N. et al.: Bioorg. Med. Chem. Lett., 2000, 10, 1657. https://doi.org/ 10.1016/S0960-894X(00)00313-9-
dc.relation.references11. Swarts J., Vosloo T., Cronge S. et al.: Anticancer Res., 2008, 28, 2781.-
dc.relation.references12. Acevedo-Morantes C., Meléndez E., Singh P. et al.: J. Cancer. Sci. Ther., 2012, 4, 271. https://doi.org/10.4172/1948-5956.1000154-
dc.relation.references13. MoradM., Sarhan A.: Science, 2008, 50, 744. https://doi.org/10.1016/j.corsci.2007.09.002-
dc.relation.references14. Gupta S., Mourya P., SinghM. et al.: J. Organomet. Chem., 2014, 767, 136. https://doi.org/10.1016/j.jorganchem.2014.05.038-
dc.relation.references15. Van Staveren D., Metzler-Nolte N.: Chem. Rev., 2004, 104, 5931. https://doi.org/10.1021/cr0101510-
dc.relation.references16. FoudaM., Abd-Elzaher M., Abdelsamaia R. et al.: Appl. Organomet. Chem., 2007, 21, 613. https://doi.org/10.1002/aoc.1202-
dc.relation.references17. Lal B., Badshah A., Altaf A. et al.: Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/C2DT31570J-
dc.relation.references18. Scaria V., Furlani A., Longato B. et al.: Inorg. Chim. Acta, 1988, 153, 67. https://doi.org/10.1016/S0020-1693(00)83359-9-
dc.relation.references19. Neuse E., MeirimM., Blom N.: Organometallics, 1988, 7, 2562. https://doi.org/10.1021/om00102a023-
dc.relation.references20. Houlton A., Roberts R., Silver J.: J. Organomet. Chem., 1991, 418, 107. https://doi.org/10.1016/S1387-1609(00)00118-3-
dc.relation.references21. Houlton A., Christian J., Ashleigh E. et al.: J. Chem. Soc., Dalton Trans., 1999, 3229. https://doi.org/10.1039/A905168F-
dc.relation.references22. Price C., AslanogluM., Christian J. et al.: J. Chem. Soc., Dalton Trans., 1996, 4115. https://doi.org/10.1039/DT9960004115-
dc.relation.references23. Ali S., Badshah A., Ataf A.:Med. Chem Res., 2013, 22, 3154. http://dx.doi.org/10.1007/s00044-012-0311-8-
dc.relation.references24. Hussain R., Badshah A., Tahir M. et al.: Aust. J. Chem., 2013, 66, 626. https://doi.org/10.1071/CH12570-
dc.relation.references25. Jalali F., Dorraji P.: J. Pharm. Biomed. Anal., 2012, 70, 598. https://doi.org/10.1016/j.jpba.2012.06.005-
dc.relation.references26. Radi A., Eissa A., Nassef H.: J. Electroanal. Chem., 2014, 717, 24. https://doi.org/10.1016/j.jelechem.2014.01.007-
dc.relation.references27. Osgerby J., Pauson P.: J. Chem. Soc., 1958, 642, 656. https://doi.org/10.1039/JR9580000656-
dc.relation.references28. Snegur L., Yu S., Nekrasov N. et al.: Appl. Organomet. Chem., 2008, 22, 139. https://doi.org/10.1002/aoc.1362-
dc.relation.references29. Sambrook J., Fritsch E., Maniatis T.:Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbour Laboratory Press, New York 1989, 1626-1644.-
dc.relation.references30. Glasel J.: Biotechniques, 1995, 8, 62.-
dc.relation.references31. Vijayalakshmi R., Kanthimathi M., Subramanian V. et al.: Biochem. Biophys. Res. Commun., 2000, 271, 731. https://doi.org/10.1006/bbrc.2000.2707-
dc.relation.references32. Lu X., Zhu K., ZhangM. et al.: J. Biochem. Biophys. Met., 2002, 52, 189.-
dc.relation.references33. AslanogluM., Ayne G.: Anal. Bioanal. Chem., 2004, 380, 658. https://doi.org/10.1007/s00216-004-2797-5-
dc.relation.references34. Zhao G., Zhu J., Zhang J. et al.: Anal. Chim. Acta., 1999, 394, 337. https://doi.org/10.1016/S0003-2670(99)00292-5-
dc.relation.references35. Atkins P.: Physical Chemistry. Oxford University Press, Oxford 1986, 263-265.-
dc.relation.references36. Xu Z., Bai G., Dong C.: Bioorg. Med. Chem., 2005, 13, 5694. https://doi.org/10.1016/j.bmc.2005.06.023-
dc.relation.references37. Ye H., Cande C., Stephanou N.: Nat. Struct. Mol. Biol., 2002, 9, 680. https://doi.org/10.1038/nsb836-
dc.relation.references38. Li D., Huang F., Chen G. et al.: J. Inorg. Biochem., 2010, 104, 431. https://doi.org/10.1016/j.jinorgbio.2009.12.008-
dc.relation.references39. Brett C., Brett A.: Electrochemistry: Principles, Methods and Applications, Oxford Science University Publications, Oxford 1993, 256-276.-
dc.relation.references40. NieM., Wang Y., Li H.: Pol. J. Chem., 1997, 71, 816.-
dc.relation.references41. FrischM., Trucks G., Schlegel H. et al.: Gaussian 09. Gaussian Inc., Wallingford CT, 2009.-
dc.relation.references42. Becke A.: J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913-
dc.relation.references43. Miehlich B., Savin A., Stoll H. et al.: Chem. Phys. Lett., 1989, 157, 200. https://doi.org/10.1016/0009-2614(89)87234-3-
dc.relation.references44. Morris G., Ruth H., LindstromW. et al.:J. Comput. Chem., 2009, 30, 2785. https://doi.org/10.1002/jcc.21256-
dc.relation.references45. Berman H., Westbrook J., Feng Z. et al.: Nucl. Acids Res., 2000, 28, 235.-
dc.relation.references46. Lanez T., Benaicha H., Lanez E. et al.: J. Sulfur Chem., 2018, 39, 76. https://doi.org/10.1080/17415993.2017.1391811-
dc.relation.referencesen1. Kealy T., Pauson P., Nature, 1951, 168, 1039. https://doi.org/10.1038/1681039b0-
dc.relation.referencesen2. Miller S., Tebboth J., Tremaine J., J. Chem. Soc., 1952, 632. https://doi.org/10.1039/JR9520000632-
dc.relation.referencesen3. Wilkinson G., RosenblumM., WhitingM. et al., J. Am. Chem. Soc., 1952, 74, 2125. https://doi.org/10.1021/ja01128a527-
dc.relation.referencesen4. Xian-Feng H., Ling-Zhu W., Long T. et al., J. Organomet. Chem., 2014, 749, 157. https://doi.org/10.1016/j.jorganchem.2013.08.043-
dc.relation.referencesen5. Lal B., Badshah A., Altaf A. et al., Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/P.2DT31570J-
dc.relation.referencesen6. Ornelas C., New J. Chem., 2011, 35, 1973. https://doi.org/10.1039/P.1NJ20172G-
dc.relation.referencesen7. Kondapi A., Satyanarayana N., Saikrishna A., Arch. Biochem. Biophys., 2006, 450, 123. https://doi.org/ 10.1016/j.abb.2006.04.003-
dc.relation.referencesen8. StrugaM., Kossakowski J., Kedzierska E. et al., Chem. Pharm. Bull., 2007, 55, 796. https://doi.org/10.1248/cpb.55.796-
dc.relation.referencesen9. Biot B., Francois N., Maciejewski L. et al., Bioorg. Med. Chem. Lett., 2000, 10, 839. https://doi.org/10.1016/S0960-894X(00)00120-7-
dc.relation.referencesen10. Itoh T., Shirakami S., Ishida N. et al., Bioorg. Med. Chem. Lett., 2000, 10, 1657. https://doi.org/ 10.1016/S0960-894X(00)00313-9-
dc.relation.referencesen11. Swarts J., Vosloo T., Cronge S. et al., Anticancer Res., 2008, 28, 2781.-
dc.relation.referencesen12. Acevedo-Morantes C., Meléndez E., Singh P. et al., J. Cancer. Sci. Ther., 2012, 4, 271. https://doi.org/10.4172/1948-5956.1000154-
dc.relation.referencesen13. MoradM., Sarhan A., Science, 2008, 50, 744. https://doi.org/10.1016/j.corsci.2007.09.002-
dc.relation.referencesen14. Gupta S., Mourya P., SinghM. et al., J. Organomet. Chem., 2014, 767, 136. https://doi.org/10.1016/j.jorganchem.2014.05.038-
dc.relation.referencesen15. Van Staveren D., Metzler-Nolte N., Chem. Rev., 2004, 104, 5931. https://doi.org/10.1021/cr0101510-
dc.relation.referencesen16. FoudaM., Abd-Elzaher M., Abdelsamaia R. et al., Appl. Organomet. Chem., 2007, 21, 613. https://doi.org/10.1002/aoc.1202-
dc.relation.referencesen17. Lal B., Badshah A., Altaf A. et al., Dalton. Trans., 2012, 41, 14643. https://doi.org/10.1039/P.2DT31570J-
dc.relation.referencesen18. Scaria V., Furlani A., Longato B. et al., Inorg. Chim. Acta, 1988, 153, 67. https://doi.org/10.1016/S0020-1693(00)83359-9-
dc.relation.referencesen19. Neuse E., MeirimM., Blom N., Organometallics, 1988, 7, 2562. https://doi.org/10.1021/om00102a023-
dc.relation.referencesen20. Houlton A., Roberts R., Silver J., J. Organomet. Chem., 1991, 418, 107. https://doi.org/10.1016/S1387-1609(00)00118-3-
dc.relation.referencesen21. Houlton A., Christian J., Ashleigh E. et al., J. Chem. Soc., Dalton Trans., 1999, 3229. https://doi.org/10.1039/A905168F-
dc.relation.referencesen22. Price C., AslanogluM., Christian J. et al., J. Chem. Soc., Dalton Trans., 1996, 4115. https://doi.org/10.1039/DT9960004115-
dc.relation.referencesen23. Ali S., Badshah A., Ataf A.:Med. Chem Res., 2013, 22, 3154. http://dx.doi.org/10.1007/s00044-012-0311-8-
dc.relation.referencesen24. Hussain R., Badshah A., Tahir M. et al., Aust. J. Chem., 2013, 66, 626. https://doi.org/10.1071/CH12570-
dc.relation.referencesen25. Jalali F., Dorraji P., J. Pharm. Biomed. Anal., 2012, 70, 598. https://doi.org/10.1016/j.jpba.2012.06.005-
dc.relation.referencesen26. Radi A., Eissa A., Nassef H., J. Electroanal. Chem., 2014, 717, 24. https://doi.org/10.1016/j.jelechem.2014.01.007-
dc.relation.referencesen27. Osgerby J., Pauson P., J. Chem. Soc., 1958, 642, 656. https://doi.org/10.1039/JR9580000656-
dc.relation.referencesen28. Snegur L., Yu S., Nekrasov N. et al., Appl. Organomet. Chem., 2008, 22, 139. https://doi.org/10.1002/aoc.1362-
dc.relation.referencesen29. Sambrook J., Fritsch E., Maniatis T.:Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbour Laboratory Press, New York 1989, 1626-1644.-
dc.relation.referencesen30. Glasel J., Biotechniques, 1995, 8, 62.-
dc.relation.referencesen31. Vijayalakshmi R., Kanthimathi M., Subramanian V. et al., Biochem. Biophys. Res. Commun., 2000, 271, 731. https://doi.org/10.1006/bbrc.2000.2707-
dc.relation.referencesen32. Lu X., Zhu K., ZhangM. et al., J. Biochem. Biophys. Met., 2002, 52, 189.-
dc.relation.referencesen33. AslanogluM., Ayne G., Anal. Bioanal. Chem., 2004, 380, 658. https://doi.org/10.1007/s00216-004-2797-5-
dc.relation.referencesen34. Zhao G., Zhu J., Zhang J. et al., Anal. Chim. Acta., 1999, 394, 337. https://doi.org/10.1016/S0003-2670(99)00292-5-
dc.relation.referencesen35. Atkins P., Physical Chemistry. Oxford University Press, Oxford 1986, 263-265.-
dc.relation.referencesen36. Xu Z., Bai G., Dong C., Bioorg. Med. Chem., 2005, 13, 5694. https://doi.org/10.1016/j.bmc.2005.06.023-
dc.relation.referencesen37. Ye H., Cande C., Stephanou N., Nat. Struct. Mol. Biol., 2002, 9, 680. https://doi.org/10.1038/nsb836-
dc.relation.referencesen38. Li D., Huang F., Chen G. et al., J. Inorg. Biochem., 2010, 104, 431. https://doi.org/10.1016/j.jinorgbio.2009.12.008-
dc.relation.referencesen39. Brett C., Brett A., Electrochemistry: Principles, Methods and Applications, Oxford Science University Publications, Oxford 1993, 256-276.-
dc.relation.referencesen40. NieM., Wang Y., Li H., Pol. J. Chem., 1997, 71, 816.-
dc.relation.referencesen41. FrischM., Trucks G., Schlegel H. et al., Gaussian 09. Gaussian Inc., Wallingford CT, 2009.-
dc.relation.referencesen42. Becke A., J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913-
dc.relation.referencesen43. Miehlich B., Savin A., Stoll H. et al., Chem. Phys. Lett., 1989, 157, 200. https://doi.org/10.1016/0009-2614(89)87234-3-
dc.relation.referencesen44. Morris G., Ruth H., LindstromW. et al.:J. Comput. Chem., 2009, 30, 2785. https://doi.org/10.1002/jcc.21256-
dc.relation.referencesen45. Berman H., Westbrook J., Feng Z. et al., Nucl. Acids Res., 2000, 28, 235.-
dc.relation.referencesen46. Lanez T., Benaicha H., Lanez E. et al., J. Sulfur Chem., 2018, 39, 76. https://doi.org/10.1080/17415993.2017.1391811-
dc.citation.issue1-
dc.citation.spage11-
dc.citation.epage17-
dc.coverage.placenameЛьвів-
dc.coverage.placenameLviv-
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 1

Files in This Item:
File Description SizeFormat 
2019v13n1_Lanez_E-Computational_molecular_docking_11-17.pdf1.19 MBAdobe PDFView/Open
2019v13n1_Lanez_E-Computational_molecular_docking_11-17__COVER.png522.42 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.