https://oldena.lpnu.ua/handle/ntb/46418
Title: | Physical sorption of molecular hydrogen by microporous organic polymers |
Other Titles: | Фізична сорбція молекулярного водню мікропористими органічними полімерами |
Authors: | Saldan, Ivan Stetsiv, Yuliia Makogon, Viktoriia Kovalyshyn, Yaroslav Yatsyshyn, Mykhaylo Reshetnyak, Oleksandr |
Affiliation: | Ivan Franko National University of Lviv |
Bibliographic description (Ukraine): | Physical sorption of molecular hydrogen by microporous organic polymers / Ivan Saldan, Yuliia Stetsiv, Viktoriia Makogon, Yaroslav Kovalyshyn, Mykhaylo Yatsyshyn, Oleksandr Reshetnyak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 85–94. |
Bibliographic description (International): | Physical sorption of molecular hydrogen by microporous organic polymers / Ivan Saldan, Yuliia Stetsiv, Viktoriia Makogon, Yaroslav Kovalyshyn, Mykhaylo Yatsyshyn, Oleksandr Reshetnyak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 85–94. |
Is part of: | Chemistry & Chemical Technology, 1 (13), 2019 |
Issue: | 1 |
Issue Date: | 28-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | гіперзшиті полімери мікропористі матеріали фізична сорбція ентальпія адсорбції водню hypercrosslinked polymers microporous materials physical sorption hydrogen adsorption enthalpy |
Number of pages: | 10 |
Page range: | 85-94 |
Start page: | 85 |
End page: | 94 |
Abstract: | В огляді описані зшиті та гіперзшиті полі-
мери, як матеріали з високою площею поверхні для адсорбції
великої кількості молекулярного водню. Зшиті поліанілін та
поліпіррол використані як приклади адсорбції водню мікропо-
ристими органічними полімерами. Висвітлено основну причину
фізичної сорбції, що відбувається в мікропористих органічних
полімерів, а також виклики на шляху налаштування значення
ентальпії адсорбції водню в межах 15–20 кДж/моль Н2. The present work describes crosslinked and hypercrosslinked polymers viewed as high surface area materials to adsorb a large amount of molecular hydrogen. Crosslinked polyaniline and polypyrrole were used as examples of hydrogen adsorption by microporous organic polymers. The main reason for physical sorption happening in microporous organic polymers as well the challenges on the way to adjusting the value of hydrogen adsorption enthalpy within the range of 15-20 kJ·mol–1 H2 are highlighted. |
URI: | https://ena.lpnu.ua/handle/ntb/46418 |
Copyright owner: | © Національний університет „Львівська політехніка“, 2019 © Saldan I., Stetsiv Yu., Makogon V., Kovalyshyn Ya., Yatsyshyn M., Reshetnyak O., 2019 |
URL for reference material: | https://doi.org/10.1007/s00339-016-9881-5 https://doi.org/10.1039/B720020J https://doi.org/10.1002/smll.200801762 https://doi.org/10.1016/S0925-8388(00)00899-9 https://doi.org/10.1016/S0925-8388(03)00376-1 https://doi.org/10.1016/j.jallcom.2008.03.050 https://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ https://doi.org/10.1007/s11003-006-0127-0 https://doi.org/10.1016/j.ijhydene.2008.09.002 https://doi.org/10.1007/s10008-009-0974-3 https://doi.org/10.1260/0263617053499032 https://doi.org/10.1063/1.463389 https://doi.org/10.1021/cm061186p https://doi.org/10.1021/la0523816 https://doi.org/10.1063/1.478114 https://doi.org/10.1016/j.micromeso.2014.08.017 https://doi.org/10.1021/ja01145a126 https://doi.org/10.1016/j.carbon.2004.05.015 https://doi.org/10.1007/s10450-005-6030-4 https://doi.org/10.1016/0021-9797(70)90077-9 https://doi.org/10.1016/0008-6223(89)90078-X https://doi.org/10.1016/0376-7388(94)00126-X https://doi.org/10.1103/PhysRevA.31.2672 https://doi.org/10.1252/jcej.16.470 https://doi.org/10.1021/ja9808853 https://doi.org/10.1021/la703864a https://doi.org/10.1021/la950969e https://doi.org/10.1007/BFb0051281 https://doi.org/10.1021/ma0110958 https://doi.org/10.1016/0014-3057(84)90195-2 https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X https://doi.org/10.1016/S0079-6700(00)00015-0 https://doi.org/10.1016/0079-6700(82)90002-8 https://doi.org/10.1039/A803757D https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R https://doi.org/10.1002/pola.1992.080300208 https://doi.org/10.1021/ac00031a022 https://doi.org/10.1039/B711509A https://doi.org/10.1016/S1381-5148(02)00173-6 https://doi.org/10.1134/S0012500806010022 https://doi.org/10.1039/B604625H https://doi.org/10.1016/j.synthmet.2005.05.004 https://doi.org/10.1002/er.3095 https://doi.org/10.1021/cm401978e https://doi.org/10.1021/jp063166g https://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1 https://doi.org/10.1016/j.snb.2009.01.028 https://doi.org/10.1016/j.carbon.2015.03.062 https://doi.org/10.1016/j.matlet.2015.10.053 https://doi.org/10.1016/j.matlet.2017.10.107 https://doi.org/10.1021/la0267084 https://doi.org/10.1007/BF03215580 https://doi.org/10.1021/jp9018052 https://doi.org/10.1039/B719961A https://doi.org/10.1016/j.memsci.2008.10.045 https://doi.org/10.1016/j.elecom.2008.12.014 https://doi.org/10.1007/s002890050579 https://doi.org/10.1002/app.21520 https://doi.org/10.1016/j.polymdegradstab.2008.03.013 https://doi.org/10.1016/S0379-6779(99)00035-1 https://doi.org/10.1016/j.polymertesting.2008.07.002 https://doi.org/10.1016/0379-6779(94)90210-0 https://doi.org/10.1021/ma990801q https://doi.org/10.1002/app.10981 https://doi.org/10.1016/j.polymdegradstab.2005.04.022 https://doi.org/10.1016/S0379-6779(02)00177-7 https://doi.org/10.1021/jp103780w https://doi.org/10.1016/j.jiec.2012.05.012 https://doi.org/10.1016/j.cej.2012.07.102 https://doi.org/10.1016/j.ijhydene.2006.07.012 https://doi.org/10.1016/j.matchemphys.2013.12.035 https://doi.org/10.1007/s11814-015-0122-y https://doi.org/10.1016/S0379-6779(00)01453-3 https://doi.org/10.1016/j.synthmet.2007.10.017 https://doi.org/10.1070/RC1997v066n05ABEH000261 https://doi.org/10.1016/j.polymer.2007.12.039 https://doi.org/10.1016/j.synthmet.2010.08.010 https://doi.org/10.1016/j.electacta.2017.12.005 https://doi.org/10.1016/j.synthmet.2006.08.006 https://doi.org/10.1016/j.apenergy.2014.10.040 https://doi.org/10.1016/j.synthmet.2010.06.023 https://doi.org/10.1039/B821233C https://doi.org/10.1016/j.talanta.2013.10.023 https://doi.org/10.1016/j.matchemphys.2015.10.027 https://doi.org/10.1002/marc.201300060 https://doi.org/10.1021/cm070356a https://doi.org/10.1021/jp061249r https://doi.org/10.1021/ja0542690 https://doi.org/10.1039/b515409j https://doi.org/10.1021/ja061681m https://doi.org/10.1021/ja8010176 https://doi.org/10.1021/cm802157r https://doi.org/10.3144/expresspolymlett.2017.17 https://doi.org/10.1039/C6EE01435F |
References (Ukraine): | 1. Callini E., Atakli Z., Hauback B. et al.: Appl. Phys. A, 2016, 122, 353. https://doi.org/10.1007/s00339-016-9881-5 2. Klerke A., Christensen C., Nørskov J., Vegge T.: J. Mater. Chem., 2008, 18, 2304. https://doi.org/10.1039/B720020J 3. Germain J., Frechet J., Svec F.: Small, 2009, 5, 1098. https://doi.org/10.1002/smll.200801762 4. Zavaliy I., Yelon W., Zavalij P. et al.: J. Alloy. Compd., 2000, 309, 75. https://doi.org/10.1016/S0925-8388(00)00899-9 5. Zavaliy I., Černý R., Kovalchuck I., Saldan I.: J. Alloy. Compd., 2003, 360, 173. https://doi.org/10.1016/S0925-8388(03)00376-1 6. Saldan I., Frenzel J., Shekhah O. et al.: J. Alloy. Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050 7. Saldan I., Kovalchuk I., Zavalii I.:Mater. Sci., 2003, 39, 545. https://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ 8. Saldan I., Dubov Yu., Ryabov O., Zavalii I.:Mater. Sci., 2006, 42, 634. https://doi.org/10.1007/s11003-006-0127-0 9. Saldan I., Burtovyy R., Becker H.-W. et al.: Int. J. Hydrogen Energ., 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002 10. Saldan I.: J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3 11. Sing K., Williams R.: Adsorp. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032 101. Germain J., Svec F., Frechet J.: Chem. Mater., 2008, 20, 7069. https://doi.org/10.1021/cm802157r 102. Fakirov S.: eXPRESS Polym. Lett., 2017, 11, 162. https://doi.org/10.3144/expresspolymlett.2017.17 103. Broom D., Hirscher M.: Energ. Environ. Sci., 2016, 9, 3368. https://doi.org/10.1039/C6EE01435F 12. Kaneko K., Shimizu K.: J. Chem. Phys., 1992, 97, 8705. https://doi.org/10.1063/1.463389 13. Germain J., Hradil J., Frechet J., Svec F.: Chem. Mater., 2006, 18, 4430. https://doi.org/10.1021/cm061186p 14. Bhatia S.: Langmuir, 2006, 22, 1688. https://doi.org/10.1021/la0523816 15. Wang Q., Johnson J.: J. Chem. Phys., 1999, 110, 577. https://doi.org/10.1063/1.478114 16. Villarroel-Rocha J., Barrera D., Sapag K.:Micropor. Mesopor. Mat., 2014, 200, 68. https://doi.org/10.1016/j.micromeso.2014.08.017 17. Barrett E., Joyner L., Halenda P.: J. Am. Chem. Soc., 1951, 73, 373. https://doi.org/10.1021/ja01145a126 18. Texier-Mandoki N., Dentzer J., Piquero T. et al.: Carbon, 2004, 42, 2744. https://doi.org/10.1016/j.carbon.2004.05.015 19. Gadiou R., Texier-Mandoki N., Piquero T. et al.: Adsorption, 2005, 11, 823. https://doi.org/10.1007/s10450-005-6030-4 20. Marsh H., Rand B.: J. Colloid Interf. Sci., 1970, 33, 101. https://doi.org/10.1016/0021-9797(70)90077-9 21. DubininM.: Carbon, 1989, 27, 457. https://doi.org/10.1016/0008-6223(89)90078-X 22. Kaneko K.: J. Membrane Sci., 1994, 96, 59. https://doi.org/10.1016/0376-7388(94)00126-X 23. Tarazona P.: Phys. Rev. A, 2006, 31, 2672. https://doi.org/10.1103/PhysRevA.31.2672 24. Horvath G., Kawazoe K.: J. Chem. Eng. Jpn., 1983, 16, 470. https://doi.org/10.1252/jcej.16.470 25. Zhang C., Babonneau F., Bonhomme C. et al.: J. Am. Chem. Soc., 1998, 120, 8380. https://doi.org/10.1021/ja9808853 26. Liu Y., Kabbour H., Brown C. et al.: Langmuir, 2008, 24, 4772. https://doi.org/10.1021/la703864a 27. Malbrunot P., Vidal D., Vermesse J. et al.: Langmuir, 1997, 13, 539. https://doi.org/10.1021/la950969e 28. Seidl J., Malinský J., Dušek K., HeitzW.: Adv. Polym. Sci., 1967, 5, 113. https://doi.org/10.1007/BFb0051281 29. Rohr T., Knaus S., Gruber H., Sherrington D.: Macromolecules, 2002, 35, 97. https://doi.org/10.1021/ma0110958 30. Maillardterrier M., Cazé C.: Eur. Polym. J., 1984, 20, 113. https://doi.org/10.1016/0014-3057(84)90195-2 31. Nyhus A., Hagen S.: J. Polym. Sci. A, 1999, 37, 3973. https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X 32. Okay O.: Prog. Polym. Sci., 2000, 25, 711. https://doi.org/10.1016/S0079-6700(00)00015-0 33. Guyot A., BartholinM.: Prog. Polym. Sci., 2008, 8, 277. https://doi.org/10.1016/0079-6700(82)90002-8 34. Sherrington D.: Chem. Commun., 1998, 21, 2275. https://doi.org/10.1039/A803757D 35. Li W., Stover H.: J. Polym. Sci. A, 1998, 36, 1543. https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R 36. Cheng C., Micale F., Vanderhoff J., El Aasser M.: J. Polym. Sci. A, 1992, 30, 235. https://doi.org/10.1002/pola.1992.080300208 37. Svec F., Frechet J.: Anal. Chem., 1992, 54, 820. https://doi.org/10.1021/ac00031a022 38. Germain J., Frechet J., Svec F.: J. Mater. Chem., 2007, 17, 4989. https://doi.org/10.1039/B711509A 39. TsyurupaM., Davankov V.: React. Funct. Polym., 2002, 53, 193. https://doi.org/10.1016/S1381-5148(02)00173-6 40. Pavlova L., PavlovM., Davankov V.: Dokl. Chem., 2006, 406, 6. https://doi.org/10.1134/S0012500806010022 41. Lee J., Wood C., Bradshaw D. et al.: Chem. Commun., 2006, 2670. https://doi.org/10.1039/B604625H 42. Germain J., Svec F., Fréchet J.: Proceedings of aMassachusetts Meeting. PolymericMaterials: Science and Engineering Preprints. USA, Boston 2007, 97, 272. 43. Cho S., Kwang S., Kim T., Choo K.: 224th ACS National Meeting. USA, Boston 2002, 47, 790. 44. Panella B., Kossykh L., Dettlaff-Weglikowsa U. et al.: Synth. Met., 2005, 151, 208. https://doi.org/10.1016/j.synthmet.2005.05.004 45. Attia N., Lee S., Kim H., Geckeler K.: Int. J. Energ. Res., 2014, 38, 466. https://doi.org/10.1002/er.3095 46. Goldsmith J., Wong-Foy A., CafarellaM., Siegel D.: Chem. Mater., 2013, 25, 3373. https://doi.org/10.1021/cm401978e 47. Virji S., Kaner R.: J. Phys. Chem. B, 2006, 110, 22266. https://doi.org/10.1021/jp063166g 48. Conn C., Sestak S., Baker A., Unsworth J.: Electroanal., 1998, 10, 1137. https://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1 49. Arsata R., Yub X., Li Y. et al.: Sensor. Actuator. B, 2009, 137, 529. https://doi.org/10.1016/j.snb.2009.01.028 50. Yatsyshyn М., Zastavs’ka G., Gnizdyukh Y.: Visnyk Lviv Univ., 2014, 55, 413. 51. Stetsiv Yu., Halushchak І., Yatsyshyn М., Serkiz R.: Visnyk Lviv Univ., 2016, 57, 418. 52. Stetsiv Yu., Yatsyshyn М., Demchenko P., Serkiz R.: Visnyk Lviv Univ., 2017, 58, 357. 53. Hnizdiukh Yu., Yatsyshyn M., Reshetnyak O.: [in:] Reshetnyak O., Zaikov G. (Eds.), Computational and Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group), Toronto, New Jersey 2017, 423-472. 54. Vivekanandan J., Ponnusamy V., Mahudeswaran A., Vijayanand P.: Arch. Appl. Sci. Res., 2011, 3, 147. 55. Guo H., He W., Lu Y., Zhang X.: Carbon, 2015, 92, 133. https://doi.org/10.1016/j.carbon.2015.03.062 56. Guo F., Liu Q., Mi H.:Mater. Lett., 2016, 163, 115. https://doi.org/10.1016/j.matlet.2015.10.053 57. Shi M., Bai M., Li B.:Mater. Lett., 2018, 212, 259. https://doi.org/10.1016/j.matlet.2017.10.107 58. Ho K., McKay G., Yeung K.: Langmuir, 2003, 19, 3019. https://doi.org/10.1021/la0267084 59. Fung L., Mei F., Lun Y.: Gold Bull., 2007, 40, 192. https://doi.org/10.1007/BF03215580 60. Xinqing C., Fung L., Qingjian Z. et al.: J. Phys. Chem. C, 2009, 113, 9804. https://doi.org/10.1021/jp9018052 61. Fung L., Xinqing C., Mei F., Yeung K.: Chem. Commun., 2008, 17, 2034. https://doi.org/10.1039/B719961A 62. Loh X., SairamM., Bismarck A. et al.: J. Membrane Sci., 2009, 326, 635. https://doi.org/10.1016/j.memsci.2008.10.045 63. Yang C.-H., Wang T.-L., Shieh Y.-T.: Electrochem. Commun., 2009, 11, 335. https://doi.org/10.1016/j.elecom.2008.12.014 64. Chandrakanthi N., CaremM.: Polym. Bull., 2000, 44, 101. https://doi.org/10.1007/s002890050579 65. Zhang J., Liu C., Shi G.: J. Appl. Polym. Sci., 2005, 96, 732. https://doi.org/10.1002/app.21520 66. Bhadra S., Khastgir D.: Polym. Degrad. Stabil., 2008, 93, 1094. https://doi.org/10.1016/j.polymdegradstab.2008.03.013 67. BabazadehM.: Iran. Polym. J., 2007, 16, 389. 68. Ding L., Wang X., Gregory R.: SyntheticMet., 1999, 104, 73. https://doi.org/10.1016/S0379-6779(99)00035-1 69. Bhadra S., Khastgir D.: Polym. Test., 2008, 27, 851. https://doi.org/10.1016/j.polymertesting.2008.07.002 70. Amano K., Ishikawa H., Kobayashi A. et al.: SyntheticMet., 1994, 62, 229. https://doi.org/10.1016/0379-6779(94)90210-0 71. Pereira de Silva J., De Faria D., Cordoba de Torresi S., Temperini M.:Macromolecules, 2000, 33, 3077. https://doi.org/10.1021/ma990801q 72. Kieffel Y., Travers J., Ermolieff A., Rouchon D.: J. Appl. Polym. Sci., 2002, 86, 395. https://doi.org/10.1002/app.10981 73. TrchovaM., Matejka P., Brodinova J. et al.: Polym. Degrad. Stabil., 2006, 91, 114. https://doi.org/10.1016/j.polymdegradstab.2005.04.022 74. Mathew R., Mattes B., EspeM.: SyntheticMet., 2002, 131, 141. https://doi.org/10.1016/S0379-6779(02)00177-7 75. AyadM., Abu El-Nasr A.: J. Phys. Chem. C, 2010, 114, 14377. https://doi.org/10.1021/jp103780w 76. AyadM., Abu El-Nasr A., Stejskal J.: J. Ind. Eng. Chem., 2012, 18, 1964. https://doi.org/10.1016/j.jiec.2012.05.012 77. AyadM., Zaghlol S.: Chem. Eng. J., 2012, 204-206, 79. https://doi.org/10.1016/j.cej.2012.07.102 78. Jurczyk M., Kumar A., Srinivasan S., Stefanakos E.: Int. J. Hydrog. Energ., 2007, 32, 1010. https://doi.org/10.1016/j.ijhydene.2006.07.012 79. Titus E., Cabral G., Madaleno J. et al.:2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings. USA, Santa Clara 2007, 1, 381. 80. Wang P.-C., Dan Y., Liu L.-H.:Mater. Chem. Phys., 2014, 144, 155. https://doi.org/10.1016/j.matchemphys.2013.12.035 81. Pham Q., Kim S.: Korean J. Chem. Eng., 2016, 33, 290. https://doi.org/10.1007/s11814-015-0122-y 82. Stolarczyk A., Lapkowski M.: SyntheticMet., 2001, 121, 1385. https://doi.org/10.1016/S0379-6779(00)01453-3 83. Hallik A., Alumaa A., Kurig H. et al.: SyntheticMet., 2007, 157, 1085. https://doi.org/10.1016/j.synthmet.2007.10.017 84. Vernitskaya T., Efimov O.: Russ. Chem. Rev., 1997, 66, 443. https://doi.org/10.1070/RC1997v066n05ABEH000261 85. Aleman C., Casanovas J., Torras J. et al.: Polymer, 2008, 49, 1066. https://doi.org/10.1016/j.polymer.2007.12.039 86. Wang W., Li W., Ye J. et al.: SyntheticMet., 2010, 160, 2203. https://doi.org/10.1016/j.synthmet.2010.08.010 87. Wysocka-ZołopaM., Winkler K.: Electrochim. Acta, 2017, 258, 1. https://doi.org/10.1016/j.electacta.2017.12.005 88. Hakansson E., Lin T., Wang H., Kaynak A.: SyntheticMet., 2006, 156, 1194. https://doi.org/10.1016/j.synthmet.2006.08.006 89. Wang X., Deng J., Duan X. et al.: Appl. Energ., 2015, 153, 70. https://doi.org/10.1016/j.apenergy.2014.10.040 90. Lang X., Wan Q., Feng C. et al.: SyntheticMet., 2010, 160, 1800. https://doi.org/10.1016/j.synthmet.2010.06.023 91. Germain J., Frecheta J., Svec F.: Chem. Commun., 2009, 1526. https://doi.org/10.1039/B821233C 92. Lawal A., Wallace G.: Talanta, 2014, 119, 133. https://doi.org/10.1016/j.talanta.2013.10.023 93. Okan B., Zanjani J., Letofsky-Papst I. et al.:Mater. Chem. Phys., 2015, 167, 171. https://doi.org/10.1016/j.matchemphys.2015.10.027 94. Attia N., Geckeler K.:Macromol. Rapid Comm., 2013, 34, 931. https://doi.org/10.1002/marc.201300060 95. Wood C., Tan B., Trewin A. et al.: Chem. Mater., 2007, 19, 2034. https://doi.org/10.1021/cm070356a 96. Buda C., Dunietz B.: J. Phys. Chem. B, 2006, 110, 10479. https://doi.org/10.1021/jp061249r 97. Rowsell J., Eckert J., Yaghi O.: J. Am. Chem. Soc., 2005, 127, 14904. https://doi.org/10.1021/ja0542690 98. Lochan R., Head-GordonM.: Phys. Chem. Chem. Phys., 2006, 8, 1357. https://doi.org/10.1039/b515409j 99. Li Y., Yang R.: J. Am. Chem. Soc., 2006, 128, 8136. https://doi.org/10.1021/ja061681m 100. Jiang J., Su F., Trewin A. et al.: J. Am. Chem. Soc., 2008, 130, 7710. https://doi.org/10.1021/ja8010176 |
References (International): | 1. Callini E., Atakli Z., Hauback B. et al., Appl. Phys. A, 2016, 122, 353. https://doi.org/10.1007/s00339-016-9881-5 2. Klerke A., Christensen C., Nørskov J., Vegge T., J. Mater. Chem., 2008, 18, 2304. https://doi.org/10.1039/B720020J 3. Germain J., Frechet J., Svec F., Small, 2009, 5, 1098. https://doi.org/10.1002/smll.200801762 4. Zavaliy I., Yelon W., Zavalij P. et al., J. Alloy. Compd., 2000, 309, 75. https://doi.org/10.1016/S0925-8388(00)00899-9 5. Zavaliy I., Černý R., Kovalchuck I., Saldan I., J. Alloy. Compd., 2003, 360, 173. https://doi.org/10.1016/S0925-8388(03)00376-1 6. Saldan I., Frenzel J., Shekhah O. et al., J. Alloy. Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050 7. Saldan I., Kovalchuk I., Zavalii I.:Mater. Sci., 2003, 39, 545. https://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ 8. Saldan I., Dubov Yu., Ryabov O., Zavalii I.:Mater. Sci., 2006, 42, 634. https://doi.org/10.1007/s11003-006-0127-0 9. Saldan I., Burtovyy R., Becker H.-W. et al., Int. J. Hydrogen Energ., 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002 10. Saldan I., J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3 11. Sing K., Williams R., Adsorp. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032 101. Germain J., Svec F., Frechet J., Chem. Mater., 2008, 20, 7069. https://doi.org/10.1021/cm802157r 102. Fakirov S., eXPRESS Polym. Lett., 2017, 11, 162. https://doi.org/10.3144/expresspolymlett.2017.17 103. Broom D., Hirscher M., Energ. Environ. Sci., 2016, 9, 3368. https://doi.org/10.1039/P.6EE01435F 12. Kaneko K., Shimizu K., J. Chem. Phys., 1992, 97, 8705. https://doi.org/10.1063/1.463389 13. Germain J., Hradil J., Frechet J., Svec F., Chem. Mater., 2006, 18, 4430. https://doi.org/10.1021/cm061186p 14. Bhatia S., Langmuir, 2006, 22, 1688. https://doi.org/10.1021/la0523816 15. Wang Q., Johnson J., J. Chem. Phys., 1999, 110, 577. https://doi.org/10.1063/1.478114 16. Villarroel-Rocha J., Barrera D., Sapag K.:Micropor. Mesopor. Mat., 2014, 200, 68. https://doi.org/10.1016/j.micromeso.2014.08.017 17. Barrett E., Joyner L., Halenda P., J. Am. Chem. Soc., 1951, 73, 373. https://doi.org/10.1021/ja01145a126 18. Texier-Mandoki N., Dentzer J., Piquero T. et al., Carbon, 2004, 42, 2744. https://doi.org/10.1016/j.carbon.2004.05.015 19. Gadiou R., Texier-Mandoki N., Piquero T. et al., Adsorption, 2005, 11, 823. https://doi.org/10.1007/s10450-005-6030-4 20. Marsh H., Rand B., J. Colloid Interf. Sci., 1970, 33, 101. https://doi.org/10.1016/0021-9797(70)90077-9 21. DubininM., Carbon, 1989, 27, 457. https://doi.org/10.1016/0008-6223(89)90078-X 22. Kaneko K., J. Membrane Sci., 1994, 96, 59. https://doi.org/10.1016/0376-7388(94)00126-X 23. Tarazona P., Phys. Rev. A, 2006, 31, 2672. https://doi.org/10.1103/PhysRevA.31.2672 24. Horvath G., Kawazoe K., J. Chem. Eng. Jpn., 1983, 16, 470. https://doi.org/10.1252/jcej.16.470 25. Zhang C., Babonneau F., Bonhomme C. et al., J. Am. Chem. Soc., 1998, 120, 8380. https://doi.org/10.1021/ja9808853 26. Liu Y., Kabbour H., Brown C. et al., Langmuir, 2008, 24, 4772. https://doi.org/10.1021/la703864a 27. Malbrunot P., Vidal D., Vermesse J. et al., Langmuir, 1997, 13, 539. https://doi.org/10.1021/la950969e 28. Seidl J., Malinský J., Dušek K., HeitzW., Adv. Polym. Sci., 1967, 5, 113. https://doi.org/10.1007/BFb0051281 29. Rohr T., Knaus S., Gruber H., Sherrington D., Macromolecules, 2002, 35, 97. https://doi.org/10.1021/ma0110958 30. Maillardterrier M., Cazé C., Eur. Polym. J., 1984, 20, 113. https://doi.org/10.1016/0014-3057(84)90195-2 31. Nyhus A., Hagen S., J. Polym. Sci. A, 1999, 37, 3973. https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X 32. Okay O., Prog. Polym. Sci., 2000, 25, 711. https://doi.org/10.1016/S0079-6700(00)00015-0 33. Guyot A., BartholinM., Prog. Polym. Sci., 2008, 8, 277. https://doi.org/10.1016/0079-6700(82)90002-8 34. Sherrington D., Chem. Commun., 1998, 21, 2275. https://doi.org/10.1039/A803757D 35. Li W., Stover H., J. Polym. Sci. A, 1998, 36, 1543. https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R 36. Cheng C., Micale F., Vanderhoff J., El Aasser M., J. Polym. Sci. A, 1992, 30, 235. https://doi.org/10.1002/pola.1992.080300208 37. Svec F., Frechet J., Anal. Chem., 1992, 54, 820. https://doi.org/10.1021/ac00031a022 38. Germain J., Frechet J., Svec F., J. Mater. Chem., 2007, 17, 4989. https://doi.org/10.1039/B711509A 39. TsyurupaM., Davankov V., React. Funct. Polym., 2002, 53, 193. https://doi.org/10.1016/S1381-5148(02)00173-6 40. Pavlova L., PavlovM., Davankov V., Dokl. Chem., 2006, 406, 6. https://doi.org/10.1134/S0012500806010022 41. Lee J., Wood C., Bradshaw D. et al., Chem. Commun., 2006, 2670. https://doi.org/10.1039/B604625H 42. Germain J., Svec F., Fréchet J., Proceedings of aMassachusetts Meeting. PolymericMaterials: Science and Engineering Preprints. USA, Boston 2007, 97, 272. 43. Cho S., Kwang S., Kim T., Choo K., 224th ACS National Meeting. USA, Boston 2002, 47, 790. 44. Panella B., Kossykh L., Dettlaff-Weglikowsa U. et al., Synth. Met., 2005, 151, 208. https://doi.org/10.1016/j.synthmet.2005.05.004 45. Attia N., Lee S., Kim H., Geckeler K., Int. J. Energ. Res., 2014, 38, 466. https://doi.org/10.1002/er.3095 46. Goldsmith J., Wong-Foy A., CafarellaM., Siegel D., Chem. Mater., 2013, 25, 3373. https://doi.org/10.1021/cm401978e 47. Virji S., Kaner R., J. Phys. Chem. B, 2006, 110, 22266. https://doi.org/10.1021/jp063166g 48. Conn C., Sestak S., Baker A., Unsworth J., Electroanal., 1998, 10, 1137. https://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1 49. Arsata R., Yub X., Li Y. et al., Sensor. Actuator. B, 2009, 137, 529. https://doi.org/10.1016/j.snb.2009.01.028 50. Yatsyshyn M., Zastavs’ka G., Gnizdyukh Y., Visnyk Lviv Univ., 2014, 55, 413. 51. Stetsiv Yu., Halushchak I., Yatsyshyn M., Serkiz R., Visnyk Lviv Univ., 2016, 57, 418. 52. Stetsiv Yu., Yatsyshyn M., Demchenko P., Serkiz R., Visnyk Lviv Univ., 2017, 58, 357. 53. Hnizdiukh Yu., Yatsyshyn M., Reshetnyak O., [in:] Reshetnyak O., Zaikov G. (Eds.), Computational and Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group), Toronto, New Jersey 2017, 423-472. 54. Vivekanandan J., Ponnusamy V., Mahudeswaran A., Vijayanand P., Arch. Appl. Sci. Res., 2011, 3, 147. 55. Guo H., He W., Lu Y., Zhang X., Carbon, 2015, 92, 133. https://doi.org/10.1016/j.carbon.2015.03.062 56. Guo F., Liu Q., Mi H.:Mater. Lett., 2016, 163, 115. https://doi.org/10.1016/j.matlet.2015.10.053 57. Shi M., Bai M., Li B.:Mater. Lett., 2018, 212, 259. https://doi.org/10.1016/j.matlet.2017.10.107 58. Ho K., McKay G., Yeung K., Langmuir, 2003, 19, 3019. https://doi.org/10.1021/la0267084 59. Fung L., Mei F., Lun Y., Gold Bull., 2007, 40, 192. https://doi.org/10.1007/BF03215580 60. Xinqing C., Fung L., Qingjian Z. et al., J. Phys. Chem. C, 2009, 113, 9804. https://doi.org/10.1021/jp9018052 61. Fung L., Xinqing C., Mei F., Yeung K., Chem. Commun., 2008, 17, 2034. https://doi.org/10.1039/B719961A 62. Loh X., SairamM., Bismarck A. et al., J. Membrane Sci., 2009, 326, 635. https://doi.org/10.1016/j.memsci.2008.10.045 63. Yang C.-H., Wang T.-L., Shieh Y.-T., Electrochem. Commun., 2009, 11, 335. https://doi.org/10.1016/j.elecom.2008.12.014 64. Chandrakanthi N., CaremM., Polym. Bull., 2000, 44, 101. https://doi.org/10.1007/s002890050579 65. Zhang J., Liu C., Shi G., J. Appl. Polym. Sci., 2005, 96, 732. https://doi.org/10.1002/app.21520 66. Bhadra S., Khastgir D., Polym. Degrad. Stabil., 2008, 93, 1094. https://doi.org/10.1016/j.polymdegradstab.2008.03.013 67. BabazadehM., Iran. Polym. J., 2007, 16, 389. 68. Ding L., Wang X., Gregory R., SyntheticMet., 1999, 104, 73. https://doi.org/10.1016/S0379-6779(99)00035-1 69. Bhadra S., Khastgir D., Polym. Test., 2008, 27, 851. https://doi.org/10.1016/j.polymertesting.2008.07.002 70. Amano K., Ishikawa H., Kobayashi A. et al., SyntheticMet., 1994, 62, 229. https://doi.org/10.1016/0379-6779(94)90210-0 71. Pereira de Silva J., De Faria D., Cordoba de Torresi S., Temperini M.:Macromolecules, 2000, 33, 3077. https://doi.org/10.1021/ma990801q 72. Kieffel Y., Travers J., Ermolieff A., Rouchon D., J. Appl. Polym. Sci., 2002, 86, 395. https://doi.org/10.1002/app.10981 73. TrchovaM., Matejka P., Brodinova J. et al., Polym. Degrad. Stabil., 2006, 91, 114. https://doi.org/10.1016/j.polymdegradstab.2005.04.022 74. Mathew R., Mattes B., EspeM., SyntheticMet., 2002, 131, 141. https://doi.org/10.1016/S0379-6779(02)00177-7 75. AyadM., Abu El-Nasr A., J. Phys. Chem. C, 2010, 114, 14377. https://doi.org/10.1021/jp103780w 76. AyadM., Abu El-Nasr A., Stejskal J., J. Ind. Eng. Chem., 2012, 18, 1964. https://doi.org/10.1016/j.jiec.2012.05.012 77. AyadM., Zaghlol S., Chem. Eng. J., 2012, 204-206, 79. https://doi.org/10.1016/j.cej.2012.07.102 78. Jurczyk M., Kumar A., Srinivasan S., Stefanakos E., Int. J. Hydrog. Energ., 2007, 32, 1010. https://doi.org/10.1016/j.ijhydene.2006.07.012 79. Titus E., Cabral G., Madaleno J. et al.:2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings. USA, Santa Clara 2007, 1, 381. 80. Wang P.-C., Dan Y., Liu L.-H.:Mater. Chem. Phys., 2014, 144, 155. https://doi.org/10.1016/j.matchemphys.2013.12.035 81. Pham Q., Kim S., Korean J. Chem. Eng., 2016, 33, 290. https://doi.org/10.1007/s11814-015-0122-y 82. Stolarczyk A., Lapkowski M., SyntheticMet., 2001, 121, 1385. https://doi.org/10.1016/S0379-6779(00)01453-3 83. Hallik A., Alumaa A., Kurig H. et al., SyntheticMet., 2007, 157, 1085. https://doi.org/10.1016/j.synthmet.2007.10.017 84. Vernitskaya T., Efimov O., Russ. Chem. Rev., 1997, 66, 443. https://doi.org/10.1070/RC1997v066n05ABEH000261 85. Aleman C., Casanovas J., Torras J. et al., Polymer, 2008, 49, 1066. https://doi.org/10.1016/j.polymer.2007.12.039 86. Wang W., Li W., Ye J. et al., SyntheticMet., 2010, 160, 2203. https://doi.org/10.1016/j.synthmet.2010.08.010 87. Wysocka-ZołopaM., Winkler K., Electrochim. Acta, 2017, 258, 1. https://doi.org/10.1016/j.electacta.2017.12.005 88. Hakansson E., Lin T., Wang H., Kaynak A., SyntheticMet., 2006, 156, 1194. https://doi.org/10.1016/j.synthmet.2006.08.006 89. Wang X., Deng J., Duan X. et al., Appl. Energ., 2015, 153, 70. https://doi.org/10.1016/j.apenergy.2014.10.040 90. Lang X., Wan Q., Feng C. et al., SyntheticMet., 2010, 160, 1800. https://doi.org/10.1016/j.synthmet.2010.06.023 91. Germain J., Frecheta J., Svec F., Chem. Commun., 2009, 1526. https://doi.org/10.1039/B821233C 92. Lawal A., Wallace G., Talanta, 2014, 119, 133. https://doi.org/10.1016/j.talanta.2013.10.023 93. Okan B., Zanjani J., Letofsky-Papst I. et al.:Mater. Chem. Phys., 2015, 167, 171. https://doi.org/10.1016/j.matchemphys.2015.10.027 94. Attia N., Geckeler K.:Macromol. Rapid Comm., 2013, 34, 931. https://doi.org/10.1002/marc.201300060 95. Wood C., Tan B., Trewin A. et al., Chem. Mater., 2007, 19, 2034. https://doi.org/10.1021/cm070356a 96. Buda C., Dunietz B., J. Phys. Chem. B, 2006, 110, 10479. https://doi.org/10.1021/jp061249r 97. Rowsell J., Eckert J., Yaghi O., J. Am. Chem. Soc., 2005, 127, 14904. https://doi.org/10.1021/ja0542690 98. Lochan R., Head-GordonM., Phys. Chem. Chem. Phys., 2006, 8, 1357. https://doi.org/10.1039/b515409j 99. Li Y., Yang R., J. Am. Chem. Soc., 2006, 128, 8136. https://doi.org/10.1021/ja061681m 100. Jiang J., Su F., Trewin A. et al., J. Am. Chem. Soc., 2008, 130, 7710. https://doi.org/10.1021/ja8010176 |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 1 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v13n1_Saldan_I-Physical_sorption_of_molecular_85-94.pdf | 554.89 kB | Adobe PDF | View/Open | |
2019v13n1_Saldan_I-Physical_sorption_of_molecular_85-94__COVER.png | 530.85 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.