Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46418
Title: Physical sorption of molecular hydrogen by microporous organic polymers
Other Titles: Фізична сорбція молекулярного водню мікропористими органічними полімерами
Authors: Saldan, Ivan
Stetsiv, Yuliia
Makogon, Viktoriia
Kovalyshyn, Yaroslav
Yatsyshyn, Mykhaylo
Reshetnyak, Oleksandr
Affiliation: Ivan Franko National University of Lviv
Bibliographic description (Ukraine): Physical sorption of molecular hydrogen by microporous organic polymers / Ivan Saldan, Yuliia Stetsiv, Viktoriia Makogon, Yaroslav Kovalyshyn, Mykhaylo Yatsyshyn, Oleksandr Reshetnyak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 85–94.
Bibliographic description (International): Physical sorption of molecular hydrogen by microporous organic polymers / Ivan Saldan, Yuliia Stetsiv, Viktoriia Makogon, Yaroslav Kovalyshyn, Mykhaylo Yatsyshyn, Oleksandr Reshetnyak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 85–94.
Is part of: Chemistry & Chemical Technology, 1 (13), 2019
Issue: 1
Issue Date: 28-Feb-2019
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
Keywords: гіперзшиті полімери
мікропористі матеріали
фізична сорбція
ентальпія адсорбції водню
hypercrosslinked polymers
microporous materials
physical sorption
hydrogen adsorption enthalpy
Number of pages: 10
Page range: 85-94
Start page: 85
End page: 94
Abstract: В огляді описані зшиті та гіперзшиті полі- мери, як матеріали з високою площею поверхні для адсорбції великої кількості молекулярного водню. Зшиті поліанілін та поліпіррол використані як приклади адсорбції водню мікропо- ристими органічними полімерами. Висвітлено основну причину фізичної сорбції, що відбувається в мікропористих органічних полімерів, а також виклики на шляху налаштування значення ентальпії адсорбції водню в межах 15–20 кДж/моль Н2.
The present work describes crosslinked and hypercrosslinked polymers viewed as high surface area materials to adsorb a large amount of molecular hydrogen. Crosslinked polyaniline and polypyrrole were used as examples of hydrogen adsorption by microporous organic polymers. The main reason for physical sorption happening in microporous organic polymers as well the challenges on the way to adjusting the value of hydrogen adsorption enthalpy within the range of 15-20 kJ·mol–1 H2 are highlighted.
URI: https://ena.lpnu.ua/handle/ntb/46418
Copyright owner: © Національний університет „Львівська політехніка“, 2019
© Saldan I., Stetsiv Yu., Makogon V., Kovalyshyn Ya., Yatsyshyn M., Reshetnyak O., 2019
URL for reference material: https://doi.org/10.1007/s00339-016-9881-5
https://doi.org/10.1039/B720020J
https://doi.org/10.1002/smll.200801762
https://doi.org/10.1016/S0925-8388(00)00899-9
https://doi.org/10.1016/S0925-8388(03)00376-1
https://doi.org/10.1016/j.jallcom.2008.03.050
https://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ
https://doi.org/10.1007/s11003-006-0127-0
https://doi.org/10.1016/j.ijhydene.2008.09.002
https://doi.org/10.1007/s10008-009-0974-3
https://doi.org/10.1260/0263617053499032
https://doi.org/10.1063/1.463389
https://doi.org/10.1021/cm061186p
https://doi.org/10.1021/la0523816
https://doi.org/10.1063/1.478114
https://doi.org/10.1016/j.micromeso.2014.08.017
https://doi.org/10.1021/ja01145a126
https://doi.org/10.1016/j.carbon.2004.05.015
https://doi.org/10.1007/s10450-005-6030-4
https://doi.org/10.1016/0021-9797(70)90077-9
https://doi.org/10.1016/0008-6223(89)90078-X
https://doi.org/10.1016/0376-7388(94)00126-X
https://doi.org/10.1103/PhysRevA.31.2672
https://doi.org/10.1252/jcej.16.470
https://doi.org/10.1021/ja9808853
https://doi.org/10.1021/la703864a
https://doi.org/10.1021/la950969e
https://doi.org/10.1007/BFb0051281
https://doi.org/10.1021/ma0110958
https://doi.org/10.1016/0014-3057(84)90195-2
https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X
https://doi.org/10.1016/S0079-6700(00)00015-0
https://doi.org/10.1016/0079-6700(82)90002-8
https://doi.org/10.1039/A803757D
https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R
https://doi.org/10.1002/pola.1992.080300208
https://doi.org/10.1021/ac00031a022
https://doi.org/10.1039/B711509A
https://doi.org/10.1016/S1381-5148(02)00173-6
https://doi.org/10.1134/S0012500806010022
https://doi.org/10.1039/B604625H
https://doi.org/10.1016/j.synthmet.2005.05.004
https://doi.org/10.1002/er.3095
https://doi.org/10.1021/cm401978e
https://doi.org/10.1021/jp063166g
https://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1
https://doi.org/10.1016/j.snb.2009.01.028
https://doi.org/10.1016/j.carbon.2015.03.062
https://doi.org/10.1016/j.matlet.2015.10.053
https://doi.org/10.1016/j.matlet.2017.10.107
https://doi.org/10.1021/la0267084
https://doi.org/10.1007/BF03215580
https://doi.org/10.1021/jp9018052
https://doi.org/10.1039/B719961A
https://doi.org/10.1016/j.memsci.2008.10.045
https://doi.org/10.1016/j.elecom.2008.12.014
https://doi.org/10.1007/s002890050579
https://doi.org/10.1002/app.21520
https://doi.org/10.1016/j.polymdegradstab.2008.03.013
https://doi.org/10.1016/S0379-6779(99)00035-1
https://doi.org/10.1016/j.polymertesting.2008.07.002
https://doi.org/10.1016/0379-6779(94)90210-0
https://doi.org/10.1021/ma990801q
https://doi.org/10.1002/app.10981
https://doi.org/10.1016/j.polymdegradstab.2005.04.022
https://doi.org/10.1016/S0379-6779(02)00177-7
https://doi.org/10.1021/jp103780w
https://doi.org/10.1016/j.jiec.2012.05.012
https://doi.org/10.1016/j.cej.2012.07.102
https://doi.org/10.1016/j.ijhydene.2006.07.012
https://doi.org/10.1016/j.matchemphys.2013.12.035
https://doi.org/10.1007/s11814-015-0122-y
https://doi.org/10.1016/S0379-6779(00)01453-3
https://doi.org/10.1016/j.synthmet.2007.10.017
https://doi.org/10.1070/RC1997v066n05ABEH000261
https://doi.org/10.1016/j.polymer.2007.12.039
https://doi.org/10.1016/j.synthmet.2010.08.010
https://doi.org/10.1016/j.electacta.2017.12.005
https://doi.org/10.1016/j.synthmet.2006.08.006
https://doi.org/10.1016/j.apenergy.2014.10.040
https://doi.org/10.1016/j.synthmet.2010.06.023
https://doi.org/10.1039/B821233C
https://doi.org/10.1016/j.talanta.2013.10.023
https://doi.org/10.1016/j.matchemphys.2015.10.027
https://doi.org/10.1002/marc.201300060
https://doi.org/10.1021/cm070356a
https://doi.org/10.1021/jp061249r
https://doi.org/10.1021/ja0542690
https://doi.org/10.1039/b515409j
https://doi.org/10.1021/ja061681m
https://doi.org/10.1021/ja8010176
https://doi.org/10.1021/cm802157r
https://doi.org/10.3144/expresspolymlett.2017.17
https://doi.org/10.1039/C6EE01435F
References (Ukraine): 1. Callini E., Atakli Z., Hauback B. et al.: Appl. Phys. A, 2016, 122, 353. https://doi.org/10.1007/s00339-016-9881-5
2. Klerke A., Christensen C., Nørskov J., Vegge T.: J. Mater. Chem., 2008, 18, 2304. https://doi.org/10.1039/B720020J
3. Germain J., Frechet J., Svec F.: Small, 2009, 5, 1098. https://doi.org/10.1002/smll.200801762
4. Zavaliy I., Yelon W., Zavalij P. et al.: J. Alloy. Compd., 2000, 309, 75. https://doi.org/10.1016/S0925-8388(00)00899-9
5. Zavaliy I., Černý R., Kovalchuck I., Saldan I.: J. Alloy. Compd., 2003, 360, 173. https://doi.org/10.1016/S0925-8388(03)00376-1
6. Saldan I., Frenzel J., Shekhah O. et al.: J. Alloy. Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050
7. Saldan I., Kovalchuk I., Zavalii I.:Mater. Sci., 2003, 39, 545. https://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ
8. Saldan I., Dubov Yu., Ryabov O., Zavalii I.:Mater. Sci., 2006, 42, 634. https://doi.org/10.1007/s11003-006-0127-0
9. Saldan I., Burtovyy R., Becker H.-W. et al.: Int. J. Hydrogen Energ., 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002
10. Saldan I.: J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3
11. Sing K., Williams R.: Adsorp. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032
101. Germain J., Svec F., Frechet J.: Chem. Mater., 2008, 20, 7069. https://doi.org/10.1021/cm802157r
102. Fakirov S.: eXPRESS Polym. Lett., 2017, 11, 162. https://doi.org/10.3144/expresspolymlett.2017.17
103. Broom D., Hirscher M.: Energ. Environ. Sci., 2016, 9, 3368. https://doi.org/10.1039/C6EE01435F
12. Kaneko K., Shimizu K.: J. Chem. Phys., 1992, 97, 8705. https://doi.org/10.1063/1.463389
13. Germain J., Hradil J., Frechet J., Svec F.: Chem. Mater., 2006, 18, 4430. https://doi.org/10.1021/cm061186p
14. Bhatia S.: Langmuir, 2006, 22, 1688. https://doi.org/10.1021/la0523816
15. Wang Q., Johnson J.: J. Chem. Phys., 1999, 110, 577. https://doi.org/10.1063/1.478114
16. Villarroel-Rocha J., Barrera D., Sapag K.:Micropor. Mesopor. Mat., 2014, 200, 68. https://doi.org/10.1016/j.micromeso.2014.08.017
17. Barrett E., Joyner L., Halenda P.: J. Am. Chem. Soc., 1951, 73, 373. https://doi.org/10.1021/ja01145a126
18. Texier-Mandoki N., Dentzer J., Piquero T. et al.: Carbon, 2004, 42, 2744. https://doi.org/10.1016/j.carbon.2004.05.015
19. Gadiou R., Texier-Mandoki N., Piquero T. et al.: Adsorption, 2005, 11, 823. https://doi.org/10.1007/s10450-005-6030-4
20. Marsh H., Rand B.: J. Colloid Interf. Sci., 1970, 33, 101. https://doi.org/10.1016/0021-9797(70)90077-9
21. DubininM.: Carbon, 1989, 27, 457. https://doi.org/10.1016/0008-6223(89)90078-X
22. Kaneko K.: J. Membrane Sci., 1994, 96, 59. https://doi.org/10.1016/0376-7388(94)00126-X
23. Tarazona P.: Phys. Rev. A, 2006, 31, 2672. https://doi.org/10.1103/PhysRevA.31.2672
24. Horvath G., Kawazoe K.: J. Chem. Eng. Jpn., 1983, 16, 470. https://doi.org/10.1252/jcej.16.470
25. Zhang C., Babonneau F., Bonhomme C. et al.: J. Am. Chem. Soc., 1998, 120, 8380. https://doi.org/10.1021/ja9808853
26. Liu Y., Kabbour H., Brown C. et al.: Langmuir, 2008, 24, 4772. https://doi.org/10.1021/la703864a
27. Malbrunot P., Vidal D., Vermesse J. et al.: Langmuir, 1997, 13, 539. https://doi.org/10.1021/la950969e
28. Seidl J., Malinský J., Dušek K., HeitzW.: Adv. Polym. Sci., 1967, 5, 113. https://doi.org/10.1007/BFb0051281
29. Rohr T., Knaus S., Gruber H., Sherrington D.: Macromolecules, 2002, 35, 97. https://doi.org/10.1021/ma0110958
30. Maillardterrier M., Cazé C.: Eur. Polym. J., 1984, 20, 113. https://doi.org/10.1016/0014-3057(84)90195-2
31. Nyhus A., Hagen S.: J. Polym. Sci. A, 1999, 37, 3973. https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X
32. Okay O.: Prog. Polym. Sci., 2000, 25, 711. https://doi.org/10.1016/S0079-6700(00)00015-0
33. Guyot A., BartholinM.: Prog. Polym. Sci., 2008, 8, 277. https://doi.org/10.1016/0079-6700(82)90002-8
34. Sherrington D.: Chem. Commun., 1998, 21, 2275. https://doi.org/10.1039/A803757D
35. Li W., Stover H.: J. Polym. Sci. A, 1998, 36, 1543. https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R
36. Cheng C., Micale F., Vanderhoff J., El Aasser M.: J. Polym. Sci. A, 1992, 30, 235. https://doi.org/10.1002/pola.1992.080300208
37. Svec F., Frechet J.: Anal. Chem., 1992, 54, 820. https://doi.org/10.1021/ac00031a022
38. Germain J., Frechet J., Svec F.: J. Mater. Chem., 2007, 17, 4989. https://doi.org/10.1039/B711509A
39. TsyurupaM., Davankov V.: React. Funct. Polym., 2002, 53, 193. https://doi.org/10.1016/S1381-5148(02)00173-6
40. Pavlova L., PavlovM., Davankov V.: Dokl. Chem., 2006, 406, 6. https://doi.org/10.1134/S0012500806010022
41. Lee J., Wood C., Bradshaw D. et al.: Chem. Commun., 2006, 2670. https://doi.org/10.1039/B604625H
42. Germain J., Svec F., Fréchet J.: Proceedings of aMassachusetts Meeting. PolymericMaterials: Science and Engineering Preprints. USA, Boston 2007, 97, 272.
43. Cho S., Kwang S., Kim T., Choo K.: 224th ACS National Meeting. USA, Boston 2002, 47, 790.
44. Panella B., Kossykh L., Dettlaff-Weglikowsa U. et al.: Synth. Met., 2005, 151, 208. https://doi.org/10.1016/j.synthmet.2005.05.004
45. Attia N., Lee S., Kim H., Geckeler K.: Int. J. Energ. Res., 2014, 38, 466. https://doi.org/10.1002/er.3095
46. Goldsmith J., Wong-Foy A., CafarellaM., Siegel D.: Chem. Mater., 2013, 25, 3373. https://doi.org/10.1021/cm401978e
47. Virji S., Kaner R.: J. Phys. Chem. B, 2006, 110, 22266. https://doi.org/10.1021/jp063166g
48. Conn C., Sestak S., Baker A., Unsworth J.: Electroanal., 1998, 10, 1137. https://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1
49. Arsata R., Yub X., Li Y. et al.: Sensor. Actuator. B, 2009, 137, 529. https://doi.org/10.1016/j.snb.2009.01.028
50. Yatsyshyn М., Zastavs’ka G., Gnizdyukh Y.: Visnyk Lviv Univ., 2014, 55, 413.
51. Stetsiv Yu., Halushchak І., Yatsyshyn М., Serkiz R.: Visnyk Lviv Univ., 2016, 57, 418.
52. Stetsiv Yu., Yatsyshyn М., Demchenko P., Serkiz R.: Visnyk Lviv Univ., 2017, 58, 357.
53. Hnizdiukh Yu., Yatsyshyn M., Reshetnyak O.: [in:] Reshetnyak O., Zaikov G. (Eds.), Computational and Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group), Toronto, New Jersey 2017, 423-472.
54. Vivekanandan J., Ponnusamy V., Mahudeswaran A., Vijayanand P.: Arch. Appl. Sci. Res., 2011, 3, 147.
55. Guo H., He W., Lu Y., Zhang X.: Carbon, 2015, 92, 133. https://doi.org/10.1016/j.carbon.2015.03.062
56. Guo F., Liu Q., Mi H.:Mater. Lett., 2016, 163, 115. https://doi.org/10.1016/j.matlet.2015.10.053
57. Shi M., Bai M., Li B.:Mater. Lett., 2018, 212, 259. https://doi.org/10.1016/j.matlet.2017.10.107
58. Ho K., McKay G., Yeung K.: Langmuir, 2003, 19, 3019. https://doi.org/10.1021/la0267084
59. Fung L., Mei F., Lun Y.: Gold Bull., 2007, 40, 192. https://doi.org/10.1007/BF03215580
60. Xinqing C., Fung L., Qingjian Z. et al.: J. Phys. Chem. C, 2009, 113, 9804. https://doi.org/10.1021/jp9018052
61. Fung L., Xinqing C., Mei F., Yeung K.: Chem. Commun., 2008, 17, 2034. https://doi.org/10.1039/B719961A
62. Loh X., SairamM., Bismarck A. et al.: J. Membrane Sci., 2009, 326, 635. https://doi.org/10.1016/j.memsci.2008.10.045
63. Yang C.-H., Wang T.-L., Shieh Y.-T.: Electrochem. Commun., 2009, 11, 335. https://doi.org/10.1016/j.elecom.2008.12.014
64. Chandrakanthi N., CaremM.: Polym. Bull., 2000, 44, 101. https://doi.org/10.1007/s002890050579
65. Zhang J., Liu C., Shi G.: J. Appl. Polym. Sci., 2005, 96, 732. https://doi.org/10.1002/app.21520
66. Bhadra S., Khastgir D.: Polym. Degrad. Stabil., 2008, 93, 1094. https://doi.org/10.1016/j.polymdegradstab.2008.03.013
67. BabazadehM.: Iran. Polym. J., 2007, 16, 389.
68. Ding L., Wang X., Gregory R.: SyntheticMet., 1999, 104, 73. https://doi.org/10.1016/S0379-6779(99)00035-1
69. Bhadra S., Khastgir D.: Polym. Test., 2008, 27, 851. https://doi.org/10.1016/j.polymertesting.2008.07.002
70. Amano K., Ishikawa H., Kobayashi A. et al.: SyntheticMet., 1994, 62, 229. https://doi.org/10.1016/0379-6779(94)90210-0
71. Pereira de Silva J., De Faria D., Cordoba de Torresi S., Temperini M.:Macromolecules, 2000, 33, 3077. https://doi.org/10.1021/ma990801q
72. Kieffel Y., Travers J., Ermolieff A., Rouchon D.: J. Appl. Polym. Sci., 2002, 86, 395. https://doi.org/10.1002/app.10981
73. TrchovaM., Matejka P., Brodinova J. et al.: Polym. Degrad. Stabil., 2006, 91, 114. https://doi.org/10.1016/j.polymdegradstab.2005.04.022
74. Mathew R., Mattes B., EspeM.: SyntheticMet., 2002, 131, 141. https://doi.org/10.1016/S0379-6779(02)00177-7
75. AyadM., Abu El-Nasr A.: J. Phys. Chem. C, 2010, 114, 14377. https://doi.org/10.1021/jp103780w
76. AyadM., Abu El-Nasr A., Stejskal J.: J. Ind. Eng. Chem., 2012, 18, 1964. https://doi.org/10.1016/j.jiec.2012.05.012
77. AyadM., Zaghlol S.: Chem. Eng. J., 2012, 204-206, 79. https://doi.org/10.1016/j.cej.2012.07.102
78. Jurczyk M., Kumar A., Srinivasan S., Stefanakos E.: Int. J. Hydrog. Energ., 2007, 32, 1010. https://doi.org/10.1016/j.ijhydene.2006.07.012
79. Titus E., Cabral G., Madaleno J. et al.:2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings. USA, Santa Clara 2007, 1, 381.
80. Wang P.-C., Dan Y., Liu L.-H.:Mater. Chem. Phys., 2014, 144, 155. https://doi.org/10.1016/j.matchemphys.2013.12.035
81. Pham Q., Kim S.: Korean J. Chem. Eng., 2016, 33, 290. https://doi.org/10.1007/s11814-015-0122-y
82. Stolarczyk A., Lapkowski M.: SyntheticMet., 2001, 121, 1385. https://doi.org/10.1016/S0379-6779(00)01453-3
83. Hallik A., Alumaa A., Kurig H. et al.: SyntheticMet., 2007, 157, 1085. https://doi.org/10.1016/j.synthmet.2007.10.017
84. Vernitskaya T., Efimov O.: Russ. Chem. Rev., 1997, 66, 443. https://doi.org/10.1070/RC1997v066n05ABEH000261
85. Aleman C., Casanovas J., Torras J. et al.: Polymer, 2008, 49, 1066. https://doi.org/10.1016/j.polymer.2007.12.039
86. Wang W., Li W., Ye J. et al.: SyntheticMet., 2010, 160, 2203. https://doi.org/10.1016/j.synthmet.2010.08.010
87. Wysocka-ZołopaM., Winkler K.: Electrochim. Acta, 2017, 258, 1. https://doi.org/10.1016/j.electacta.2017.12.005
88. Hakansson E., Lin T., Wang H., Kaynak A.: SyntheticMet., 2006, 156, 1194. https://doi.org/10.1016/j.synthmet.2006.08.006
89. Wang X., Deng J., Duan X. et al.: Appl. Energ., 2015, 153, 70. https://doi.org/10.1016/j.apenergy.2014.10.040
90. Lang X., Wan Q., Feng C. et al.: SyntheticMet., 2010, 160, 1800. https://doi.org/10.1016/j.synthmet.2010.06.023
91. Germain J., Frecheta J., Svec F.: Chem. Commun., 2009, 1526. https://doi.org/10.1039/B821233C
92. Lawal A., Wallace G.: Talanta, 2014, 119, 133. https://doi.org/10.1016/j.talanta.2013.10.023
93. Okan B., Zanjani J., Letofsky-Papst I. et al.:Mater. Chem. Phys., 2015, 167, 171. https://doi.org/10.1016/j.matchemphys.2015.10.027
94. Attia N., Geckeler K.:Macromol. Rapid Comm., 2013, 34, 931. https://doi.org/10.1002/marc.201300060
95. Wood C., Tan B., Trewin A. et al.: Chem. Mater., 2007, 19, 2034. https://doi.org/10.1021/cm070356a
96. Buda C., Dunietz B.: J. Phys. Chem. B, 2006, 110, 10479. https://doi.org/10.1021/jp061249r
97. Rowsell J., Eckert J., Yaghi O.: J. Am. Chem. Soc., 2005, 127, 14904. https://doi.org/10.1021/ja0542690
98. Lochan R., Head-GordonM.: Phys. Chem. Chem. Phys., 2006, 8, 1357. https://doi.org/10.1039/b515409j
99. Li Y., Yang R.: J. Am. Chem. Soc., 2006, 128, 8136. https://doi.org/10.1021/ja061681m
100. Jiang J., Su F., Trewin A. et al.: J. Am. Chem. Soc., 2008, 130, 7710. https://doi.org/10.1021/ja8010176
References (International): 1. Callini E., Atakli Z., Hauback B. et al., Appl. Phys. A, 2016, 122, 353. https://doi.org/10.1007/s00339-016-9881-5
2. Klerke A., Christensen C., Nørskov J., Vegge T., J. Mater. Chem., 2008, 18, 2304. https://doi.org/10.1039/B720020J
3. Germain J., Frechet J., Svec F., Small, 2009, 5, 1098. https://doi.org/10.1002/smll.200801762
4. Zavaliy I., Yelon W., Zavalij P. et al., J. Alloy. Compd., 2000, 309, 75. https://doi.org/10.1016/S0925-8388(00)00899-9
5. Zavaliy I., Černý R., Kovalchuck I., Saldan I., J. Alloy. Compd., 2003, 360, 173. https://doi.org/10.1016/S0925-8388(03)00376-1
6. Saldan I., Frenzel J., Shekhah O. et al., J. Alloy. Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050
7. Saldan I., Kovalchuk I., Zavalii I.:Mater. Sci., 2003, 39, 545. https://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ
8. Saldan I., Dubov Yu., Ryabov O., Zavalii I.:Mater. Sci., 2006, 42, 634. https://doi.org/10.1007/s11003-006-0127-0
9. Saldan I., Burtovyy R., Becker H.-W. et al., Int. J. Hydrogen Energ., 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002
10. Saldan I., J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3
11. Sing K., Williams R., Adsorp. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032
101. Germain J., Svec F., Frechet J., Chem. Mater., 2008, 20, 7069. https://doi.org/10.1021/cm802157r
102. Fakirov S., eXPRESS Polym. Lett., 2017, 11, 162. https://doi.org/10.3144/expresspolymlett.2017.17
103. Broom D., Hirscher M., Energ. Environ. Sci., 2016, 9, 3368. https://doi.org/10.1039/P.6EE01435F
12. Kaneko K., Shimizu K., J. Chem. Phys., 1992, 97, 8705. https://doi.org/10.1063/1.463389
13. Germain J., Hradil J., Frechet J., Svec F., Chem. Mater., 2006, 18, 4430. https://doi.org/10.1021/cm061186p
14. Bhatia S., Langmuir, 2006, 22, 1688. https://doi.org/10.1021/la0523816
15. Wang Q., Johnson J., J. Chem. Phys., 1999, 110, 577. https://doi.org/10.1063/1.478114
16. Villarroel-Rocha J., Barrera D., Sapag K.:Micropor. Mesopor. Mat., 2014, 200, 68. https://doi.org/10.1016/j.micromeso.2014.08.017
17. Barrett E., Joyner L., Halenda P., J. Am. Chem. Soc., 1951, 73, 373. https://doi.org/10.1021/ja01145a126
18. Texier-Mandoki N., Dentzer J., Piquero T. et al., Carbon, 2004, 42, 2744. https://doi.org/10.1016/j.carbon.2004.05.015
19. Gadiou R., Texier-Mandoki N., Piquero T. et al., Adsorption, 2005, 11, 823. https://doi.org/10.1007/s10450-005-6030-4
20. Marsh H., Rand B., J. Colloid Interf. Sci., 1970, 33, 101. https://doi.org/10.1016/0021-9797(70)90077-9
21. DubininM., Carbon, 1989, 27, 457. https://doi.org/10.1016/0008-6223(89)90078-X
22. Kaneko K., J. Membrane Sci., 1994, 96, 59. https://doi.org/10.1016/0376-7388(94)00126-X
23. Tarazona P., Phys. Rev. A, 2006, 31, 2672. https://doi.org/10.1103/PhysRevA.31.2672
24. Horvath G., Kawazoe K., J. Chem. Eng. Jpn., 1983, 16, 470. https://doi.org/10.1252/jcej.16.470
25. Zhang C., Babonneau F., Bonhomme C. et al., J. Am. Chem. Soc., 1998, 120, 8380. https://doi.org/10.1021/ja9808853
26. Liu Y., Kabbour H., Brown C. et al., Langmuir, 2008, 24, 4772. https://doi.org/10.1021/la703864a
27. Malbrunot P., Vidal D., Vermesse J. et al., Langmuir, 1997, 13, 539. https://doi.org/10.1021/la950969e
28. Seidl J., Malinský J., Dušek K., HeitzW., Adv. Polym. Sci., 1967, 5, 113. https://doi.org/10.1007/BFb0051281
29. Rohr T., Knaus S., Gruber H., Sherrington D., Macromolecules, 2002, 35, 97. https://doi.org/10.1021/ma0110958
30. Maillardterrier M., Cazé C., Eur. Polym. J., 1984, 20, 113. https://doi.org/10.1016/0014-3057(84)90195-2
31. Nyhus A., Hagen S., J. Polym. Sci. A, 1999, 37, 3973. https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X
32. Okay O., Prog. Polym. Sci., 2000, 25, 711. https://doi.org/10.1016/S0079-6700(00)00015-0
33. Guyot A., BartholinM., Prog. Polym. Sci., 2008, 8, 277. https://doi.org/10.1016/0079-6700(82)90002-8
34. Sherrington D., Chem. Commun., 1998, 21, 2275. https://doi.org/10.1039/A803757D
35. Li W., Stover H., J. Polym. Sci. A, 1998, 36, 1543. https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R
36. Cheng C., Micale F., Vanderhoff J., El Aasser M., J. Polym. Sci. A, 1992, 30, 235. https://doi.org/10.1002/pola.1992.080300208
37. Svec F., Frechet J., Anal. Chem., 1992, 54, 820. https://doi.org/10.1021/ac00031a022
38. Germain J., Frechet J., Svec F., J. Mater. Chem., 2007, 17, 4989. https://doi.org/10.1039/B711509A
39. TsyurupaM., Davankov V., React. Funct. Polym., 2002, 53, 193. https://doi.org/10.1016/S1381-5148(02)00173-6
40. Pavlova L., PavlovM., Davankov V., Dokl. Chem., 2006, 406, 6. https://doi.org/10.1134/S0012500806010022
41. Lee J., Wood C., Bradshaw D. et al., Chem. Commun., 2006, 2670. https://doi.org/10.1039/B604625H
42. Germain J., Svec F., Fréchet J., Proceedings of aMassachusetts Meeting. PolymericMaterials: Science and Engineering Preprints. USA, Boston 2007, 97, 272.
43. Cho S., Kwang S., Kim T., Choo K., 224th ACS National Meeting. USA, Boston 2002, 47, 790.
44. Panella B., Kossykh L., Dettlaff-Weglikowsa U. et al., Synth. Met., 2005, 151, 208. https://doi.org/10.1016/j.synthmet.2005.05.004
45. Attia N., Lee S., Kim H., Geckeler K., Int. J. Energ. Res., 2014, 38, 466. https://doi.org/10.1002/er.3095
46. Goldsmith J., Wong-Foy A., CafarellaM., Siegel D., Chem. Mater., 2013, 25, 3373. https://doi.org/10.1021/cm401978e
47. Virji S., Kaner R., J. Phys. Chem. B, 2006, 110, 22266. https://doi.org/10.1021/jp063166g
48. Conn C., Sestak S., Baker A., Unsworth J., Electroanal., 1998, 10, 1137. https://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1
49. Arsata R., Yub X., Li Y. et al., Sensor. Actuator. B, 2009, 137, 529. https://doi.org/10.1016/j.snb.2009.01.028
50. Yatsyshyn M., Zastavs’ka G., Gnizdyukh Y., Visnyk Lviv Univ., 2014, 55, 413.
51. Stetsiv Yu., Halushchak I., Yatsyshyn M., Serkiz R., Visnyk Lviv Univ., 2016, 57, 418.
52. Stetsiv Yu., Yatsyshyn M., Demchenko P., Serkiz R., Visnyk Lviv Univ., 2017, 58, 357.
53. Hnizdiukh Yu., Yatsyshyn M., Reshetnyak O., [in:] Reshetnyak O., Zaikov G. (Eds.), Computational and Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group), Toronto, New Jersey 2017, 423-472.
54. Vivekanandan J., Ponnusamy V., Mahudeswaran A., Vijayanand P., Arch. Appl. Sci. Res., 2011, 3, 147.
55. Guo H., He W., Lu Y., Zhang X., Carbon, 2015, 92, 133. https://doi.org/10.1016/j.carbon.2015.03.062
56. Guo F., Liu Q., Mi H.:Mater. Lett., 2016, 163, 115. https://doi.org/10.1016/j.matlet.2015.10.053
57. Shi M., Bai M., Li B.:Mater. Lett., 2018, 212, 259. https://doi.org/10.1016/j.matlet.2017.10.107
58. Ho K., McKay G., Yeung K., Langmuir, 2003, 19, 3019. https://doi.org/10.1021/la0267084
59. Fung L., Mei F., Lun Y., Gold Bull., 2007, 40, 192. https://doi.org/10.1007/BF03215580
60. Xinqing C., Fung L., Qingjian Z. et al., J. Phys. Chem. C, 2009, 113, 9804. https://doi.org/10.1021/jp9018052
61. Fung L., Xinqing C., Mei F., Yeung K., Chem. Commun., 2008, 17, 2034. https://doi.org/10.1039/B719961A
62. Loh X., SairamM., Bismarck A. et al., J. Membrane Sci., 2009, 326, 635. https://doi.org/10.1016/j.memsci.2008.10.045
63. Yang C.-H., Wang T.-L., Shieh Y.-T., Electrochem. Commun., 2009, 11, 335. https://doi.org/10.1016/j.elecom.2008.12.014
64. Chandrakanthi N., CaremM., Polym. Bull., 2000, 44, 101. https://doi.org/10.1007/s002890050579
65. Zhang J., Liu C., Shi G., J. Appl. Polym. Sci., 2005, 96, 732. https://doi.org/10.1002/app.21520
66. Bhadra S., Khastgir D., Polym. Degrad. Stabil., 2008, 93, 1094. https://doi.org/10.1016/j.polymdegradstab.2008.03.013
67. BabazadehM., Iran. Polym. J., 2007, 16, 389.
68. Ding L., Wang X., Gregory R., SyntheticMet., 1999, 104, 73. https://doi.org/10.1016/S0379-6779(99)00035-1
69. Bhadra S., Khastgir D., Polym. Test., 2008, 27, 851. https://doi.org/10.1016/j.polymertesting.2008.07.002
70. Amano K., Ishikawa H., Kobayashi A. et al., SyntheticMet., 1994, 62, 229. https://doi.org/10.1016/0379-6779(94)90210-0
71. Pereira de Silva J., De Faria D., Cordoba de Torresi S., Temperini M.:Macromolecules, 2000, 33, 3077. https://doi.org/10.1021/ma990801q
72. Kieffel Y., Travers J., Ermolieff A., Rouchon D., J. Appl. Polym. Sci., 2002, 86, 395. https://doi.org/10.1002/app.10981
73. TrchovaM., Matejka P., Brodinova J. et al., Polym. Degrad. Stabil., 2006, 91, 114. https://doi.org/10.1016/j.polymdegradstab.2005.04.022
74. Mathew R., Mattes B., EspeM., SyntheticMet., 2002, 131, 141. https://doi.org/10.1016/S0379-6779(02)00177-7
75. AyadM., Abu El-Nasr A., J. Phys. Chem. C, 2010, 114, 14377. https://doi.org/10.1021/jp103780w
76. AyadM., Abu El-Nasr A., Stejskal J., J. Ind. Eng. Chem., 2012, 18, 1964. https://doi.org/10.1016/j.jiec.2012.05.012
77. AyadM., Zaghlol S., Chem. Eng. J., 2012, 204-206, 79. https://doi.org/10.1016/j.cej.2012.07.102
78. Jurczyk M., Kumar A., Srinivasan S., Stefanakos E., Int. J. Hydrog. Energ., 2007, 32, 1010. https://doi.org/10.1016/j.ijhydene.2006.07.012
79. Titus E., Cabral G., Madaleno J. et al.:2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings. USA, Santa Clara 2007, 1, 381.
80. Wang P.-C., Dan Y., Liu L.-H.:Mater. Chem. Phys., 2014, 144, 155. https://doi.org/10.1016/j.matchemphys.2013.12.035
81. Pham Q., Kim S., Korean J. Chem. Eng., 2016, 33, 290. https://doi.org/10.1007/s11814-015-0122-y
82. Stolarczyk A., Lapkowski M., SyntheticMet., 2001, 121, 1385. https://doi.org/10.1016/S0379-6779(00)01453-3
83. Hallik A., Alumaa A., Kurig H. et al., SyntheticMet., 2007, 157, 1085. https://doi.org/10.1016/j.synthmet.2007.10.017
84. Vernitskaya T., Efimov O., Russ. Chem. Rev., 1997, 66, 443. https://doi.org/10.1070/RC1997v066n05ABEH000261
85. Aleman C., Casanovas J., Torras J. et al., Polymer, 2008, 49, 1066. https://doi.org/10.1016/j.polymer.2007.12.039
86. Wang W., Li W., Ye J. et al., SyntheticMet., 2010, 160, 2203. https://doi.org/10.1016/j.synthmet.2010.08.010
87. Wysocka-ZołopaM., Winkler K., Electrochim. Acta, 2017, 258, 1. https://doi.org/10.1016/j.electacta.2017.12.005
88. Hakansson E., Lin T., Wang H., Kaynak A., SyntheticMet., 2006, 156, 1194. https://doi.org/10.1016/j.synthmet.2006.08.006
89. Wang X., Deng J., Duan X. et al., Appl. Energ., 2015, 153, 70. https://doi.org/10.1016/j.apenergy.2014.10.040
90. Lang X., Wan Q., Feng C. et al., SyntheticMet., 2010, 160, 1800. https://doi.org/10.1016/j.synthmet.2010.06.023
91. Germain J., Frecheta J., Svec F., Chem. Commun., 2009, 1526. https://doi.org/10.1039/B821233C
92. Lawal A., Wallace G., Talanta, 2014, 119, 133. https://doi.org/10.1016/j.talanta.2013.10.023
93. Okan B., Zanjani J., Letofsky-Papst I. et al.:Mater. Chem. Phys., 2015, 167, 171. https://doi.org/10.1016/j.matchemphys.2015.10.027
94. Attia N., Geckeler K.:Macromol. Rapid Comm., 2013, 34, 931. https://doi.org/10.1002/marc.201300060
95. Wood C., Tan B., Trewin A. et al., Chem. Mater., 2007, 19, 2034. https://doi.org/10.1021/cm070356a
96. Buda C., Dunietz B., J. Phys. Chem. B, 2006, 110, 10479. https://doi.org/10.1021/jp061249r
97. Rowsell J., Eckert J., Yaghi O., J. Am. Chem. Soc., 2005, 127, 14904. https://doi.org/10.1021/ja0542690
98. Lochan R., Head-GordonM., Phys. Chem. Chem. Phys., 2006, 8, 1357. https://doi.org/10.1039/b515409j
99. Li Y., Yang R., J. Am. Chem. Soc., 2006, 128, 8136. https://doi.org/10.1021/ja061681m
100. Jiang J., Su F., Trewin A. et al., J. Am. Chem. Soc., 2008, 130, 7710. https://doi.org/10.1021/ja8010176
Content type: Article
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 1

Files in This Item:
File Description SizeFormat 
2019v13n1_Saldan_I-Physical_sorption_of_molecular_85-94.pdf554.89 kBAdobe PDFView/Open
2019v13n1_Saldan_I-Physical_sorption_of_molecular_85-94__COVER.png530.85 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.