Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46418
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaldan, Ivan-
dc.contributor.authorStetsiv, Yuliia-
dc.contributor.authorMakogon, Viktoriia-
dc.contributor.authorKovalyshyn, Yaroslav-
dc.contributor.authorYatsyshyn, Mykhaylo-
dc.contributor.authorReshetnyak, Oleksandr-
dc.date.accessioned2020-03-02T10:50:11Z-
dc.date.available2020-03-02T10:50:11Z-
dc.date.created2019-02-28-
dc.date.issued2019-02-28-
dc.identifier.citationPhysical sorption of molecular hydrogen by microporous organic polymers / Ivan Saldan, Yuliia Stetsiv, Viktoriia Makogon, Yaroslav Kovalyshyn, Mykhaylo Yatsyshyn, Oleksandr Reshetnyak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 85–94.-
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46418-
dc.description.abstractВ огляді описані зшиті та гіперзшиті полі- мери, як матеріали з високою площею поверхні для адсорбції великої кількості молекулярного водню. Зшиті поліанілін та поліпіррол використані як приклади адсорбції водню мікропо- ристими органічними полімерами. Висвітлено основну причину фізичної сорбції, що відбувається в мікропористих органічних полімерів, а також виклики на шляху налаштування значення ентальпії адсорбції водню в межах 15–20 кДж/моль Н2.-
dc.description.abstractThe present work describes crosslinked and hypercrosslinked polymers viewed as high surface area materials to adsorb a large amount of molecular hydrogen. Crosslinked polyaniline and polypyrrole were used as examples of hydrogen adsorption by microporous organic polymers. The main reason for physical sorption happening in microporous organic polymers as well the challenges on the way to adjusting the value of hydrogen adsorption enthalpy within the range of 15-20 kJ·mol–1 H2 are highlighted.-
dc.format.extent85-94-
dc.language.isoen-
dc.publisherВидавництво Львівської політехніки-
dc.publisherLviv Politechnic Publishing House-
dc.relation.ispartofChemistry & Chemical Technology, 1 (13), 2019-
dc.relation.urihttps://doi.org/10.1007/s00339-016-9881-5-
dc.relation.urihttps://doi.org/10.1039/B720020J-
dc.relation.urihttps://doi.org/10.1002/smll.200801762-
dc.relation.urihttps://doi.org/10.1016/S0925-8388(00)00899-9-
dc.relation.urihttps://doi.org/10.1016/S0925-8388(03)00376-1-
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2008.03.050-
dc.relation.urihttps://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ-
dc.relation.urihttps://doi.org/10.1007/s11003-006-0127-0-
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2008.09.002-
dc.relation.urihttps://doi.org/10.1007/s10008-009-0974-3-
dc.relation.urihttps://doi.org/10.1260/0263617053499032-
dc.relation.urihttps://doi.org/10.1063/1.463389-
dc.relation.urihttps://doi.org/10.1021/cm061186p-
dc.relation.urihttps://doi.org/10.1021/la0523816-
dc.relation.urihttps://doi.org/10.1063/1.478114-
dc.relation.urihttps://doi.org/10.1016/j.micromeso.2014.08.017-
dc.relation.urihttps://doi.org/10.1021/ja01145a126-
dc.relation.urihttps://doi.org/10.1016/j.carbon.2004.05.015-
dc.relation.urihttps://doi.org/10.1007/s10450-005-6030-4-
dc.relation.urihttps://doi.org/10.1016/0021-9797(70)90077-9-
dc.relation.urihttps://doi.org/10.1016/0008-6223(89)90078-X-
dc.relation.urihttps://doi.org/10.1016/0376-7388(94)00126-X-
dc.relation.urihttps://doi.org/10.1103/PhysRevA.31.2672-
dc.relation.urihttps://doi.org/10.1252/jcej.16.470-
dc.relation.urihttps://doi.org/10.1021/ja9808853-
dc.relation.urihttps://doi.org/10.1021/la703864a-
dc.relation.urihttps://doi.org/10.1021/la950969e-
dc.relation.urihttps://doi.org/10.1007/BFb0051281-
dc.relation.urihttps://doi.org/10.1021/ma0110958-
dc.relation.urihttps://doi.org/10.1016/0014-3057(84)90195-2-
dc.relation.urihttps://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X-
dc.relation.urihttps://doi.org/10.1016/S0079-6700(00)00015-0-
dc.relation.urihttps://doi.org/10.1016/0079-6700(82)90002-8-
dc.relation.urihttps://doi.org/10.1039/A803757D-
dc.relation.urihttps://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R-
dc.relation.urihttps://doi.org/10.1002/pola.1992.080300208-
dc.relation.urihttps://doi.org/10.1021/ac00031a022-
dc.relation.urihttps://doi.org/10.1039/B711509A-
dc.relation.urihttps://doi.org/10.1016/S1381-5148(02)00173-6-
dc.relation.urihttps://doi.org/10.1134/S0012500806010022-
dc.relation.urihttps://doi.org/10.1039/B604625H-
dc.relation.urihttps://doi.org/10.1016/j.synthmet.2005.05.004-
dc.relation.urihttps://doi.org/10.1002/er.3095-
dc.relation.urihttps://doi.org/10.1021/cm401978e-
dc.relation.urihttps://doi.org/10.1021/jp063166g-
dc.relation.urihttps://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1-
dc.relation.urihttps://doi.org/10.1016/j.snb.2009.01.028-
dc.relation.urihttps://doi.org/10.1016/j.carbon.2015.03.062-
dc.relation.urihttps://doi.org/10.1016/j.matlet.2015.10.053-
dc.relation.urihttps://doi.org/10.1016/j.matlet.2017.10.107-
dc.relation.urihttps://doi.org/10.1021/la0267084-
dc.relation.urihttps://doi.org/10.1007/BF03215580-
dc.relation.urihttps://doi.org/10.1021/jp9018052-
dc.relation.urihttps://doi.org/10.1039/B719961A-
dc.relation.urihttps://doi.org/10.1016/j.memsci.2008.10.045-
dc.relation.urihttps://doi.org/10.1016/j.elecom.2008.12.014-
dc.relation.urihttps://doi.org/10.1007/s002890050579-
dc.relation.urihttps://doi.org/10.1002/app.21520-
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2008.03.013-
dc.relation.urihttps://doi.org/10.1016/S0379-6779(99)00035-1-
dc.relation.urihttps://doi.org/10.1016/j.polymertesting.2008.07.002-
dc.relation.urihttps://doi.org/10.1016/0379-6779(94)90210-0-
dc.relation.urihttps://doi.org/10.1021/ma990801q-
dc.relation.urihttps://doi.org/10.1002/app.10981-
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2005.04.022-
dc.relation.urihttps://doi.org/10.1016/S0379-6779(02)00177-7-
dc.relation.urihttps://doi.org/10.1021/jp103780w-
dc.relation.urihttps://doi.org/10.1016/j.jiec.2012.05.012-
dc.relation.urihttps://doi.org/10.1016/j.cej.2012.07.102-
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2006.07.012-
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2013.12.035-
dc.relation.urihttps://doi.org/10.1007/s11814-015-0122-y-
dc.relation.urihttps://doi.org/10.1016/S0379-6779(00)01453-3-
dc.relation.urihttps://doi.org/10.1016/j.synthmet.2007.10.017-
dc.relation.urihttps://doi.org/10.1070/RC1997v066n05ABEH000261-
dc.relation.urihttps://doi.org/10.1016/j.polymer.2007.12.039-
dc.relation.urihttps://doi.org/10.1016/j.synthmet.2010.08.010-
dc.relation.urihttps://doi.org/10.1016/j.electacta.2017.12.005-
dc.relation.urihttps://doi.org/10.1016/j.synthmet.2006.08.006-
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2014.10.040-
dc.relation.urihttps://doi.org/10.1016/j.synthmet.2010.06.023-
dc.relation.urihttps://doi.org/10.1039/B821233C-
dc.relation.urihttps://doi.org/10.1016/j.talanta.2013.10.023-
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2015.10.027-
dc.relation.urihttps://doi.org/10.1002/marc.201300060-
dc.relation.urihttps://doi.org/10.1021/cm070356a-
dc.relation.urihttps://doi.org/10.1021/jp061249r-
dc.relation.urihttps://doi.org/10.1021/ja0542690-
dc.relation.urihttps://doi.org/10.1039/b515409j-
dc.relation.urihttps://doi.org/10.1021/ja061681m-
dc.relation.urihttps://doi.org/10.1021/ja8010176-
dc.relation.urihttps://doi.org/10.1021/cm802157r-
dc.relation.urihttps://doi.org/10.3144/expresspolymlett.2017.17-
dc.relation.urihttps://doi.org/10.1039/C6EE01435F-
dc.subjectгіперзшиті полімери-
dc.subjectмікропористі матеріали-
dc.subjectфізична сорбція-
dc.subjectентальпія адсорбції водню-
dc.subjecthypercrosslinked polymers-
dc.subjectmicroporous materials-
dc.subjectphysical sorption-
dc.subjecthydrogen adsorption enthalpy-
dc.titlePhysical sorption of molecular hydrogen by microporous organic polymers-
dc.title.alternativeФізична сорбція молекулярного водню мікропористими органічними полімерами-
dc.typeArticle-
dc.rights.holder© Національний університет „Львівська політехніка“, 2019-
dc.rights.holder© Saldan I., Stetsiv Yu., Makogon V., Kovalyshyn Ya., Yatsyshyn M., Reshetnyak O., 2019-
dc.contributor.affiliationIvan Franko National University of Lviv-
dc.format.pages10-
dc.identifier.citationenPhysical sorption of molecular hydrogen by microporous organic polymers / Ivan Saldan, Yuliia Stetsiv, Viktoriia Makogon, Yaroslav Kovalyshyn, Mykhaylo Yatsyshyn, Oleksandr Reshetnyak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 85–94.-
dc.relation.references1. Callini E., Atakli Z., Hauback B. et al.: Appl. Phys. A, 2016, 122, 353. https://doi.org/10.1007/s00339-016-9881-5-
dc.relation.references2. Klerke A., Christensen C., Nørskov J., Vegge T.: J. Mater. Chem., 2008, 18, 2304. https://doi.org/10.1039/B720020J-
dc.relation.references3. Germain J., Frechet J., Svec F.: Small, 2009, 5, 1098. https://doi.org/10.1002/smll.200801762-
dc.relation.references4. Zavaliy I., Yelon W., Zavalij P. et al.: J. Alloy. Compd., 2000, 309, 75. https://doi.org/10.1016/S0925-8388(00)00899-9-
dc.relation.references5. Zavaliy I., Černý R., Kovalchuck I., Saldan I.: J. Alloy. Compd., 2003, 360, 173. https://doi.org/10.1016/S0925-8388(03)00376-1-
dc.relation.references6. Saldan I., Frenzel J., Shekhah O. et al.: J. Alloy. Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050-
dc.relation.references7. Saldan I., Kovalchuk I., Zavalii I.:Mater. Sci., 2003, 39, 545. https://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ-
dc.relation.references8. Saldan I., Dubov Yu., Ryabov O., Zavalii I.:Mater. Sci., 2006, 42, 634. https://doi.org/10.1007/s11003-006-0127-0-
dc.relation.references9. Saldan I., Burtovyy R., Becker H.-W. et al.: Int. J. Hydrogen Energ., 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002-
dc.relation.references10. Saldan I.: J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3-
dc.relation.references11. Sing K., Williams R.: Adsorp. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032-
dc.relation.references101. Germain J., Svec F., Frechet J.: Chem. Mater., 2008, 20, 7069. https://doi.org/10.1021/cm802157r-
dc.relation.references102. Fakirov S.: eXPRESS Polym. Lett., 2017, 11, 162. https://doi.org/10.3144/expresspolymlett.2017.17-
dc.relation.references103. Broom D., Hirscher M.: Energ. Environ. Sci., 2016, 9, 3368. https://doi.org/10.1039/C6EE01435F-
dc.relation.references12. Kaneko K., Shimizu K.: J. Chem. Phys., 1992, 97, 8705. https://doi.org/10.1063/1.463389-
dc.relation.references13. Germain J., Hradil J., Frechet J., Svec F.: Chem. Mater., 2006, 18, 4430. https://doi.org/10.1021/cm061186p-
dc.relation.references14. Bhatia S.: Langmuir, 2006, 22, 1688. https://doi.org/10.1021/la0523816-
dc.relation.references15. Wang Q., Johnson J.: J. Chem. Phys., 1999, 110, 577. https://doi.org/10.1063/1.478114-
dc.relation.references16. Villarroel-Rocha J., Barrera D., Sapag K.:Micropor. Mesopor. Mat., 2014, 200, 68. https://doi.org/10.1016/j.micromeso.2014.08.017-
dc.relation.references17. Barrett E., Joyner L., Halenda P.: J. Am. Chem. Soc., 1951, 73, 373. https://doi.org/10.1021/ja01145a126-
dc.relation.references18. Texier-Mandoki N., Dentzer J., Piquero T. et al.: Carbon, 2004, 42, 2744. https://doi.org/10.1016/j.carbon.2004.05.015-
dc.relation.references19. Gadiou R., Texier-Mandoki N., Piquero T. et al.: Adsorption, 2005, 11, 823. https://doi.org/10.1007/s10450-005-6030-4-
dc.relation.references20. Marsh H., Rand B.: J. Colloid Interf. Sci., 1970, 33, 101. https://doi.org/10.1016/0021-9797(70)90077-9-
dc.relation.references21. DubininM.: Carbon, 1989, 27, 457. https://doi.org/10.1016/0008-6223(89)90078-X-
dc.relation.references22. Kaneko K.: J. Membrane Sci., 1994, 96, 59. https://doi.org/10.1016/0376-7388(94)00126-X-
dc.relation.references23. Tarazona P.: Phys. Rev. A, 2006, 31, 2672. https://doi.org/10.1103/PhysRevA.31.2672-
dc.relation.references24. Horvath G., Kawazoe K.: J. Chem. Eng. Jpn., 1983, 16, 470. https://doi.org/10.1252/jcej.16.470-
dc.relation.references25. Zhang C., Babonneau F., Bonhomme C. et al.: J. Am. Chem. Soc., 1998, 120, 8380. https://doi.org/10.1021/ja9808853-
dc.relation.references26. Liu Y., Kabbour H., Brown C. et al.: Langmuir, 2008, 24, 4772. https://doi.org/10.1021/la703864a-
dc.relation.references27. Malbrunot P., Vidal D., Vermesse J. et al.: Langmuir, 1997, 13, 539. https://doi.org/10.1021/la950969e-
dc.relation.references28. Seidl J., Malinský J., Dušek K., HeitzW.: Adv. Polym. Sci., 1967, 5, 113. https://doi.org/10.1007/BFb0051281-
dc.relation.references29. Rohr T., Knaus S., Gruber H., Sherrington D.: Macromolecules, 2002, 35, 97. https://doi.org/10.1021/ma0110958-
dc.relation.references30. Maillardterrier M., Cazé C.: Eur. Polym. J., 1984, 20, 113. https://doi.org/10.1016/0014-3057(84)90195-2-
dc.relation.references31. Nyhus A., Hagen S.: J. Polym. Sci. A, 1999, 37, 3973. https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X-
dc.relation.references32. Okay O.: Prog. Polym. Sci., 2000, 25, 711. https://doi.org/10.1016/S0079-6700(00)00015-0-
dc.relation.references33. Guyot A., BartholinM.: Prog. Polym. Sci., 2008, 8, 277. https://doi.org/10.1016/0079-6700(82)90002-8-
dc.relation.references34. Sherrington D.: Chem. Commun., 1998, 21, 2275. https://doi.org/10.1039/A803757D-
dc.relation.references35. Li W., Stover H.: J. Polym. Sci. A, 1998, 36, 1543. https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R-
dc.relation.references36. Cheng C., Micale F., Vanderhoff J., El Aasser M.: J. Polym. Sci. A, 1992, 30, 235. https://doi.org/10.1002/pola.1992.080300208-
dc.relation.references37. Svec F., Frechet J.: Anal. Chem., 1992, 54, 820. https://doi.org/10.1021/ac00031a022-
dc.relation.references38. Germain J., Frechet J., Svec F.: J. Mater. Chem., 2007, 17, 4989. https://doi.org/10.1039/B711509A-
dc.relation.references39. TsyurupaM., Davankov V.: React. Funct. Polym., 2002, 53, 193. https://doi.org/10.1016/S1381-5148(02)00173-6-
dc.relation.references40. Pavlova L., PavlovM., Davankov V.: Dokl. Chem., 2006, 406, 6. https://doi.org/10.1134/S0012500806010022-
dc.relation.references41. Lee J., Wood C., Bradshaw D. et al.: Chem. Commun., 2006, 2670. https://doi.org/10.1039/B604625H-
dc.relation.references42. Germain J., Svec F., Fréchet J.: Proceedings of aMassachusetts Meeting. PolymericMaterials: Science and Engineering Preprints. USA, Boston 2007, 97, 272.-
dc.relation.references43. Cho S., Kwang S., Kim T., Choo K.: 224th ACS National Meeting. USA, Boston 2002, 47, 790.-
dc.relation.references44. Panella B., Kossykh L., Dettlaff-Weglikowsa U. et al.: Synth. Met., 2005, 151, 208. https://doi.org/10.1016/j.synthmet.2005.05.004-
dc.relation.references45. Attia N., Lee S., Kim H., Geckeler K.: Int. J. Energ. Res., 2014, 38, 466. https://doi.org/10.1002/er.3095-
dc.relation.references46. Goldsmith J., Wong-Foy A., CafarellaM., Siegel D.: Chem. Mater., 2013, 25, 3373. https://doi.org/10.1021/cm401978e-
dc.relation.references47. Virji S., Kaner R.: J. Phys. Chem. B, 2006, 110, 22266. https://doi.org/10.1021/jp063166g-
dc.relation.references48. Conn C., Sestak S., Baker A., Unsworth J.: Electroanal., 1998, 10, 1137. https://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1-
dc.relation.references49. Arsata R., Yub X., Li Y. et al.: Sensor. Actuator. B, 2009, 137, 529. https://doi.org/10.1016/j.snb.2009.01.028-
dc.relation.references50. Yatsyshyn М., Zastavs’ka G., Gnizdyukh Y.: Visnyk Lviv Univ., 2014, 55, 413.-
dc.relation.references51. Stetsiv Yu., Halushchak І., Yatsyshyn М., Serkiz R.: Visnyk Lviv Univ., 2016, 57, 418.-
dc.relation.references52. Stetsiv Yu., Yatsyshyn М., Demchenko P., Serkiz R.: Visnyk Lviv Univ., 2017, 58, 357.-
dc.relation.references53. Hnizdiukh Yu., Yatsyshyn M., Reshetnyak O.: [in:] Reshetnyak O., Zaikov G. (Eds.), Computational and Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group), Toronto, New Jersey 2017, 423-472.-
dc.relation.references54. Vivekanandan J., Ponnusamy V., Mahudeswaran A., Vijayanand P.: Arch. Appl. Sci. Res., 2011, 3, 147.-
dc.relation.references55. Guo H., He W., Lu Y., Zhang X.: Carbon, 2015, 92, 133. https://doi.org/10.1016/j.carbon.2015.03.062-
dc.relation.references56. Guo F., Liu Q., Mi H.:Mater. Lett., 2016, 163, 115. https://doi.org/10.1016/j.matlet.2015.10.053-
dc.relation.references57. Shi M., Bai M., Li B.:Mater. Lett., 2018, 212, 259. https://doi.org/10.1016/j.matlet.2017.10.107-
dc.relation.references58. Ho K., McKay G., Yeung K.: Langmuir, 2003, 19, 3019. https://doi.org/10.1021/la0267084-
dc.relation.references59. Fung L., Mei F., Lun Y.: Gold Bull., 2007, 40, 192. https://doi.org/10.1007/BF03215580-
dc.relation.references60. Xinqing C., Fung L., Qingjian Z. et al.: J. Phys. Chem. C, 2009, 113, 9804. https://doi.org/10.1021/jp9018052-
dc.relation.references61. Fung L., Xinqing C., Mei F., Yeung K.: Chem. Commun., 2008, 17, 2034. https://doi.org/10.1039/B719961A-
dc.relation.references62. Loh X., SairamM., Bismarck A. et al.: J. Membrane Sci., 2009, 326, 635. https://doi.org/10.1016/j.memsci.2008.10.045-
dc.relation.references63. Yang C.-H., Wang T.-L., Shieh Y.-T.: Electrochem. Commun., 2009, 11, 335. https://doi.org/10.1016/j.elecom.2008.12.014-
dc.relation.references64. Chandrakanthi N., CaremM.: Polym. Bull., 2000, 44, 101. https://doi.org/10.1007/s002890050579-
dc.relation.references65. Zhang J., Liu C., Shi G.: J. Appl. Polym. Sci., 2005, 96, 732. https://doi.org/10.1002/app.21520-
dc.relation.references66. Bhadra S., Khastgir D.: Polym. Degrad. Stabil., 2008, 93, 1094. https://doi.org/10.1016/j.polymdegradstab.2008.03.013-
dc.relation.references67. BabazadehM.: Iran. Polym. J., 2007, 16, 389.-
dc.relation.references68. Ding L., Wang X., Gregory R.: SyntheticMet., 1999, 104, 73. https://doi.org/10.1016/S0379-6779(99)00035-1-
dc.relation.references69. Bhadra S., Khastgir D.: Polym. Test., 2008, 27, 851. https://doi.org/10.1016/j.polymertesting.2008.07.002-
dc.relation.references70. Amano K., Ishikawa H., Kobayashi A. et al.: SyntheticMet., 1994, 62, 229. https://doi.org/10.1016/0379-6779(94)90210-0-
dc.relation.references71. Pereira de Silva J., De Faria D., Cordoba de Torresi S., Temperini M.:Macromolecules, 2000, 33, 3077. https://doi.org/10.1021/ma990801q-
dc.relation.references72. Kieffel Y., Travers J., Ermolieff A., Rouchon D.: J. Appl. Polym. Sci., 2002, 86, 395. https://doi.org/10.1002/app.10981-
dc.relation.references73. TrchovaM., Matejka P., Brodinova J. et al.: Polym. Degrad. Stabil., 2006, 91, 114. https://doi.org/10.1016/j.polymdegradstab.2005.04.022-
dc.relation.references74. Mathew R., Mattes B., EspeM.: SyntheticMet., 2002, 131, 141. https://doi.org/10.1016/S0379-6779(02)00177-7-
dc.relation.references75. AyadM., Abu El-Nasr A.: J. Phys. Chem. C, 2010, 114, 14377. https://doi.org/10.1021/jp103780w-
dc.relation.references76. AyadM., Abu El-Nasr A., Stejskal J.: J. Ind. Eng. Chem., 2012, 18, 1964. https://doi.org/10.1016/j.jiec.2012.05.012-
dc.relation.references77. AyadM., Zaghlol S.: Chem. Eng. J., 2012, 204-206, 79. https://doi.org/10.1016/j.cej.2012.07.102-
dc.relation.references78. Jurczyk M., Kumar A., Srinivasan S., Stefanakos E.: Int. J. Hydrog. Energ., 2007, 32, 1010. https://doi.org/10.1016/j.ijhydene.2006.07.012-
dc.relation.references79. Titus E., Cabral G., Madaleno J. et al.:2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings. USA, Santa Clara 2007, 1, 381.-
dc.relation.references80. Wang P.-C., Dan Y., Liu L.-H.:Mater. Chem. Phys., 2014, 144, 155. https://doi.org/10.1016/j.matchemphys.2013.12.035-
dc.relation.references81. Pham Q., Kim S.: Korean J. Chem. Eng., 2016, 33, 290. https://doi.org/10.1007/s11814-015-0122-y-
dc.relation.references82. Stolarczyk A., Lapkowski M.: SyntheticMet., 2001, 121, 1385. https://doi.org/10.1016/S0379-6779(00)01453-3-
dc.relation.references83. Hallik A., Alumaa A., Kurig H. et al.: SyntheticMet., 2007, 157, 1085. https://doi.org/10.1016/j.synthmet.2007.10.017-
dc.relation.references84. Vernitskaya T., Efimov O.: Russ. Chem. Rev., 1997, 66, 443. https://doi.org/10.1070/RC1997v066n05ABEH000261-
dc.relation.references85. Aleman C., Casanovas J., Torras J. et al.: Polymer, 2008, 49, 1066. https://doi.org/10.1016/j.polymer.2007.12.039-
dc.relation.references86. Wang W., Li W., Ye J. et al.: SyntheticMet., 2010, 160, 2203. https://doi.org/10.1016/j.synthmet.2010.08.010-
dc.relation.references87. Wysocka-ZołopaM., Winkler K.: Electrochim. Acta, 2017, 258, 1. https://doi.org/10.1016/j.electacta.2017.12.005-
dc.relation.references88. Hakansson E., Lin T., Wang H., Kaynak A.: SyntheticMet., 2006, 156, 1194. https://doi.org/10.1016/j.synthmet.2006.08.006-
dc.relation.references89. Wang X., Deng J., Duan X. et al.: Appl. Energ., 2015, 153, 70. https://doi.org/10.1016/j.apenergy.2014.10.040-
dc.relation.references90. Lang X., Wan Q., Feng C. et al.: SyntheticMet., 2010, 160, 1800. https://doi.org/10.1016/j.synthmet.2010.06.023-
dc.relation.references91. Germain J., Frecheta J., Svec F.: Chem. Commun., 2009, 1526. https://doi.org/10.1039/B821233C-
dc.relation.references92. Lawal A., Wallace G.: Talanta, 2014, 119, 133. https://doi.org/10.1016/j.talanta.2013.10.023-
dc.relation.references93. Okan B., Zanjani J., Letofsky-Papst I. et al.:Mater. Chem. Phys., 2015, 167, 171. https://doi.org/10.1016/j.matchemphys.2015.10.027-
dc.relation.references94. Attia N., Geckeler K.:Macromol. Rapid Comm., 2013, 34, 931. https://doi.org/10.1002/marc.201300060-
dc.relation.references95. Wood C., Tan B., Trewin A. et al.: Chem. Mater., 2007, 19, 2034. https://doi.org/10.1021/cm070356a-
dc.relation.references96. Buda C., Dunietz B.: J. Phys. Chem. B, 2006, 110, 10479. https://doi.org/10.1021/jp061249r-
dc.relation.references97. Rowsell J., Eckert J., Yaghi O.: J. Am. Chem. Soc., 2005, 127, 14904. https://doi.org/10.1021/ja0542690-
dc.relation.references98. Lochan R., Head-GordonM.: Phys. Chem. Chem. Phys., 2006, 8, 1357. https://doi.org/10.1039/b515409j-
dc.relation.references99. Li Y., Yang R.: J. Am. Chem. Soc., 2006, 128, 8136. https://doi.org/10.1021/ja061681m-
dc.relation.references100. Jiang J., Su F., Trewin A. et al.: J. Am. Chem. Soc., 2008, 130, 7710. https://doi.org/10.1021/ja8010176-
dc.relation.referencesen1. Callini E., Atakli Z., Hauback B. et al., Appl. Phys. A, 2016, 122, 353. https://doi.org/10.1007/s00339-016-9881-5-
dc.relation.referencesen2. Klerke A., Christensen C., Nørskov J., Vegge T., J. Mater. Chem., 2008, 18, 2304. https://doi.org/10.1039/B720020J-
dc.relation.referencesen3. Germain J., Frechet J., Svec F., Small, 2009, 5, 1098. https://doi.org/10.1002/smll.200801762-
dc.relation.referencesen4. Zavaliy I., Yelon W., Zavalij P. et al., J. Alloy. Compd., 2000, 309, 75. https://doi.org/10.1016/S0925-8388(00)00899-9-
dc.relation.referencesen5. Zavaliy I., Černý R., Kovalchuck I., Saldan I., J. Alloy. Compd., 2003, 360, 173. https://doi.org/10.1016/S0925-8388(03)00376-1-
dc.relation.referencesen6. Saldan I., Frenzel J., Shekhah O. et al., J. Alloy. Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050-
dc.relation.referencesen7. Saldan I., Kovalchuk I., Zavalii I.:Mater. Sci., 2003, 39, 545. https://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ-
dc.relation.referencesen8. Saldan I., Dubov Yu., Ryabov O., Zavalii I.:Mater. Sci., 2006, 42, 634. https://doi.org/10.1007/s11003-006-0127-0-
dc.relation.referencesen9. Saldan I., Burtovyy R., Becker H.-W. et al., Int. J. Hydrogen Energ., 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002-
dc.relation.referencesen10. Saldan I., J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3-
dc.relation.referencesen11. Sing K., Williams R., Adsorp. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032-
dc.relation.referencesen101. Germain J., Svec F., Frechet J., Chem. Mater., 2008, 20, 7069. https://doi.org/10.1021/cm802157r-
dc.relation.referencesen102. Fakirov S., eXPRESS Polym. Lett., 2017, 11, 162. https://doi.org/10.3144/expresspolymlett.2017.17-
dc.relation.referencesen103. Broom D., Hirscher M., Energ. Environ. Sci., 2016, 9, 3368. https://doi.org/10.1039/P.6EE01435F-
dc.relation.referencesen12. Kaneko K., Shimizu K., J. Chem. Phys., 1992, 97, 8705. https://doi.org/10.1063/1.463389-
dc.relation.referencesen13. Germain J., Hradil J., Frechet J., Svec F., Chem. Mater., 2006, 18, 4430. https://doi.org/10.1021/cm061186p-
dc.relation.referencesen14. Bhatia S., Langmuir, 2006, 22, 1688. https://doi.org/10.1021/la0523816-
dc.relation.referencesen15. Wang Q., Johnson J., J. Chem. Phys., 1999, 110, 577. https://doi.org/10.1063/1.478114-
dc.relation.referencesen16. Villarroel-Rocha J., Barrera D., Sapag K.:Micropor. Mesopor. Mat., 2014, 200, 68. https://doi.org/10.1016/j.micromeso.2014.08.017-
dc.relation.referencesen17. Barrett E., Joyner L., Halenda P., J. Am. Chem. Soc., 1951, 73, 373. https://doi.org/10.1021/ja01145a126-
dc.relation.referencesen18. Texier-Mandoki N., Dentzer J., Piquero T. et al., Carbon, 2004, 42, 2744. https://doi.org/10.1016/j.carbon.2004.05.015-
dc.relation.referencesen19. Gadiou R., Texier-Mandoki N., Piquero T. et al., Adsorption, 2005, 11, 823. https://doi.org/10.1007/s10450-005-6030-4-
dc.relation.referencesen20. Marsh H., Rand B., J. Colloid Interf. Sci., 1970, 33, 101. https://doi.org/10.1016/0021-9797(70)90077-9-
dc.relation.referencesen21. DubininM., Carbon, 1989, 27, 457. https://doi.org/10.1016/0008-6223(89)90078-X-
dc.relation.referencesen22. Kaneko K., J. Membrane Sci., 1994, 96, 59. https://doi.org/10.1016/0376-7388(94)00126-X-
dc.relation.referencesen23. Tarazona P., Phys. Rev. A, 2006, 31, 2672. https://doi.org/10.1103/PhysRevA.31.2672-
dc.relation.referencesen24. Horvath G., Kawazoe K., J. Chem. Eng. Jpn., 1983, 16, 470. https://doi.org/10.1252/jcej.16.470-
dc.relation.referencesen25. Zhang C., Babonneau F., Bonhomme C. et al., J. Am. Chem. Soc., 1998, 120, 8380. https://doi.org/10.1021/ja9808853-
dc.relation.referencesen26. Liu Y., Kabbour H., Brown C. et al., Langmuir, 2008, 24, 4772. https://doi.org/10.1021/la703864a-
dc.relation.referencesen27. Malbrunot P., Vidal D., Vermesse J. et al., Langmuir, 1997, 13, 539. https://doi.org/10.1021/la950969e-
dc.relation.referencesen28. Seidl J., Malinský J., Dušek K., HeitzW., Adv. Polym. Sci., 1967, 5, 113. https://doi.org/10.1007/BFb0051281-
dc.relation.referencesen29. Rohr T., Knaus S., Gruber H., Sherrington D., Macromolecules, 2002, 35, 97. https://doi.org/10.1021/ma0110958-
dc.relation.referencesen30. Maillardterrier M., Cazé C., Eur. Polym. J., 1984, 20, 113. https://doi.org/10.1016/0014-3057(84)90195-2-
dc.relation.referencesen31. Nyhus A., Hagen S., J. Polym. Sci. A, 1999, 37, 3973. https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X-
dc.relation.referencesen32. Okay O., Prog. Polym. Sci., 2000, 25, 711. https://doi.org/10.1016/S0079-6700(00)00015-0-
dc.relation.referencesen33. Guyot A., BartholinM., Prog. Polym. Sci., 2008, 8, 277. https://doi.org/10.1016/0079-6700(82)90002-8-
dc.relation.referencesen34. Sherrington D., Chem. Commun., 1998, 21, 2275. https://doi.org/10.1039/A803757D-
dc.relation.referencesen35. Li W., Stover H., J. Polym. Sci. A, 1998, 36, 1543. https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R-
dc.relation.referencesen36. Cheng C., Micale F., Vanderhoff J., El Aasser M., J. Polym. Sci. A, 1992, 30, 235. https://doi.org/10.1002/pola.1992.080300208-
dc.relation.referencesen37. Svec F., Frechet J., Anal. Chem., 1992, 54, 820. https://doi.org/10.1021/ac00031a022-
dc.relation.referencesen38. Germain J., Frechet J., Svec F., J. Mater. Chem., 2007, 17, 4989. https://doi.org/10.1039/B711509A-
dc.relation.referencesen39. TsyurupaM., Davankov V., React. Funct. Polym., 2002, 53, 193. https://doi.org/10.1016/S1381-5148(02)00173-6-
dc.relation.referencesen40. Pavlova L., PavlovM., Davankov V., Dokl. Chem., 2006, 406, 6. https://doi.org/10.1134/S0012500806010022-
dc.relation.referencesen41. Lee J., Wood C., Bradshaw D. et al., Chem. Commun., 2006, 2670. https://doi.org/10.1039/B604625H-
dc.relation.referencesen42. Germain J., Svec F., Fréchet J., Proceedings of aMassachusetts Meeting. PolymericMaterials: Science and Engineering Preprints. USA, Boston 2007, 97, 272.-
dc.relation.referencesen43. Cho S., Kwang S., Kim T., Choo K., 224th ACS National Meeting. USA, Boston 2002, 47, 790.-
dc.relation.referencesen44. Panella B., Kossykh L., Dettlaff-Weglikowsa U. et al., Synth. Met., 2005, 151, 208. https://doi.org/10.1016/j.synthmet.2005.05.004-
dc.relation.referencesen45. Attia N., Lee S., Kim H., Geckeler K., Int. J. Energ. Res., 2014, 38, 466. https://doi.org/10.1002/er.3095-
dc.relation.referencesen46. Goldsmith J., Wong-Foy A., CafarellaM., Siegel D., Chem. Mater., 2013, 25, 3373. https://doi.org/10.1021/cm401978e-
dc.relation.referencesen47. Virji S., Kaner R., J. Phys. Chem. B, 2006, 110, 22266. https://doi.org/10.1021/jp063166g-
dc.relation.referencesen48. Conn C., Sestak S., Baker A., Unsworth J., Electroanal., 1998, 10, 1137. https://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1-
dc.relation.referencesen49. Arsata R., Yub X., Li Y. et al., Sensor. Actuator. B, 2009, 137, 529. https://doi.org/10.1016/j.snb.2009.01.028-
dc.relation.referencesen50. Yatsyshyn M., Zastavs’ka G., Gnizdyukh Y., Visnyk Lviv Univ., 2014, 55, 413.-
dc.relation.referencesen51. Stetsiv Yu., Halushchak I., Yatsyshyn M., Serkiz R., Visnyk Lviv Univ., 2016, 57, 418.-
dc.relation.referencesen52. Stetsiv Yu., Yatsyshyn M., Demchenko P., Serkiz R., Visnyk Lviv Univ., 2017, 58, 357.-
dc.relation.referencesen53. Hnizdiukh Yu., Yatsyshyn M., Reshetnyak O., [in:] Reshetnyak O., Zaikov G. (Eds.), Computational and Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group), Toronto, New Jersey 2017, 423-472.-
dc.relation.referencesen54. Vivekanandan J., Ponnusamy V., Mahudeswaran A., Vijayanand P., Arch. Appl. Sci. Res., 2011, 3, 147.-
dc.relation.referencesen55. Guo H., He W., Lu Y., Zhang X., Carbon, 2015, 92, 133. https://doi.org/10.1016/j.carbon.2015.03.062-
dc.relation.referencesen56. Guo F., Liu Q., Mi H.:Mater. Lett., 2016, 163, 115. https://doi.org/10.1016/j.matlet.2015.10.053-
dc.relation.referencesen57. Shi M., Bai M., Li B.:Mater. Lett., 2018, 212, 259. https://doi.org/10.1016/j.matlet.2017.10.107-
dc.relation.referencesen58. Ho K., McKay G., Yeung K., Langmuir, 2003, 19, 3019. https://doi.org/10.1021/la0267084-
dc.relation.referencesen59. Fung L., Mei F., Lun Y., Gold Bull., 2007, 40, 192. https://doi.org/10.1007/BF03215580-
dc.relation.referencesen60. Xinqing C., Fung L., Qingjian Z. et al., J. Phys. Chem. C, 2009, 113, 9804. https://doi.org/10.1021/jp9018052-
dc.relation.referencesen61. Fung L., Xinqing C., Mei F., Yeung K., Chem. Commun., 2008, 17, 2034. https://doi.org/10.1039/B719961A-
dc.relation.referencesen62. Loh X., SairamM., Bismarck A. et al., J. Membrane Sci., 2009, 326, 635. https://doi.org/10.1016/j.memsci.2008.10.045-
dc.relation.referencesen63. Yang C.-H., Wang T.-L., Shieh Y.-T., Electrochem. Commun., 2009, 11, 335. https://doi.org/10.1016/j.elecom.2008.12.014-
dc.relation.referencesen64. Chandrakanthi N., CaremM., Polym. Bull., 2000, 44, 101. https://doi.org/10.1007/s002890050579-
dc.relation.referencesen65. Zhang J., Liu C., Shi G., J. Appl. Polym. Sci., 2005, 96, 732. https://doi.org/10.1002/app.21520-
dc.relation.referencesen66. Bhadra S., Khastgir D., Polym. Degrad. Stabil., 2008, 93, 1094. https://doi.org/10.1016/j.polymdegradstab.2008.03.013-
dc.relation.referencesen67. BabazadehM., Iran. Polym. J., 2007, 16, 389.-
dc.relation.referencesen68. Ding L., Wang X., Gregory R., SyntheticMet., 1999, 104, 73. https://doi.org/10.1016/S0379-6779(99)00035-1-
dc.relation.referencesen69. Bhadra S., Khastgir D., Polym. Test., 2008, 27, 851. https://doi.org/10.1016/j.polymertesting.2008.07.002-
dc.relation.referencesen70. Amano K., Ishikawa H., Kobayashi A. et al., SyntheticMet., 1994, 62, 229. https://doi.org/10.1016/0379-6779(94)90210-0-
dc.relation.referencesen71. Pereira de Silva J., De Faria D., Cordoba de Torresi S., Temperini M.:Macromolecules, 2000, 33, 3077. https://doi.org/10.1021/ma990801q-
dc.relation.referencesen72. Kieffel Y., Travers J., Ermolieff A., Rouchon D., J. Appl. Polym. Sci., 2002, 86, 395. https://doi.org/10.1002/app.10981-
dc.relation.referencesen73. TrchovaM., Matejka P., Brodinova J. et al., Polym. Degrad. Stabil., 2006, 91, 114. https://doi.org/10.1016/j.polymdegradstab.2005.04.022-
dc.relation.referencesen74. Mathew R., Mattes B., EspeM., SyntheticMet., 2002, 131, 141. https://doi.org/10.1016/S0379-6779(02)00177-7-
dc.relation.referencesen75. AyadM., Abu El-Nasr A., J. Phys. Chem. C, 2010, 114, 14377. https://doi.org/10.1021/jp103780w-
dc.relation.referencesen76. AyadM., Abu El-Nasr A., Stejskal J., J. Ind. Eng. Chem., 2012, 18, 1964. https://doi.org/10.1016/j.jiec.2012.05.012-
dc.relation.referencesen77. AyadM., Zaghlol S., Chem. Eng. J., 2012, 204-206, 79. https://doi.org/10.1016/j.cej.2012.07.102-
dc.relation.referencesen78. Jurczyk M., Kumar A., Srinivasan S., Stefanakos E., Int. J. Hydrog. Energ., 2007, 32, 1010. https://doi.org/10.1016/j.ijhydene.2006.07.012-
dc.relation.referencesen79. Titus E., Cabral G., Madaleno J. et al.:2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings. USA, Santa Clara 2007, 1, 381.-
dc.relation.referencesen80. Wang P.-C., Dan Y., Liu L.-H.:Mater. Chem. Phys., 2014, 144, 155. https://doi.org/10.1016/j.matchemphys.2013.12.035-
dc.relation.referencesen81. Pham Q., Kim S., Korean J. Chem. Eng., 2016, 33, 290. https://doi.org/10.1007/s11814-015-0122-y-
dc.relation.referencesen82. Stolarczyk A., Lapkowski M., SyntheticMet., 2001, 121, 1385. https://doi.org/10.1016/S0379-6779(00)01453-3-
dc.relation.referencesen83. Hallik A., Alumaa A., Kurig H. et al., SyntheticMet., 2007, 157, 1085. https://doi.org/10.1016/j.synthmet.2007.10.017-
dc.relation.referencesen84. Vernitskaya T., Efimov O., Russ. Chem. Rev., 1997, 66, 443. https://doi.org/10.1070/RC1997v066n05ABEH000261-
dc.relation.referencesen85. Aleman C., Casanovas J., Torras J. et al., Polymer, 2008, 49, 1066. https://doi.org/10.1016/j.polymer.2007.12.039-
dc.relation.referencesen86. Wang W., Li W., Ye J. et al., SyntheticMet., 2010, 160, 2203. https://doi.org/10.1016/j.synthmet.2010.08.010-
dc.relation.referencesen87. Wysocka-ZołopaM., Winkler K., Electrochim. Acta, 2017, 258, 1. https://doi.org/10.1016/j.electacta.2017.12.005-
dc.relation.referencesen88. Hakansson E., Lin T., Wang H., Kaynak A., SyntheticMet., 2006, 156, 1194. https://doi.org/10.1016/j.synthmet.2006.08.006-
dc.relation.referencesen89. Wang X., Deng J., Duan X. et al., Appl. Energ., 2015, 153, 70. https://doi.org/10.1016/j.apenergy.2014.10.040-
dc.relation.referencesen90. Lang X., Wan Q., Feng C. et al., SyntheticMet., 2010, 160, 1800. https://doi.org/10.1016/j.synthmet.2010.06.023-
dc.relation.referencesen91. Germain J., Frecheta J., Svec F., Chem. Commun., 2009, 1526. https://doi.org/10.1039/B821233C-
dc.relation.referencesen92. Lawal A., Wallace G., Talanta, 2014, 119, 133. https://doi.org/10.1016/j.talanta.2013.10.023-
dc.relation.referencesen93. Okan B., Zanjani J., Letofsky-Papst I. et al.:Mater. Chem. Phys., 2015, 167, 171. https://doi.org/10.1016/j.matchemphys.2015.10.027-
dc.relation.referencesen94. Attia N., Geckeler K.:Macromol. Rapid Comm., 2013, 34, 931. https://doi.org/10.1002/marc.201300060-
dc.relation.referencesen95. Wood C., Tan B., Trewin A. et al., Chem. Mater., 2007, 19, 2034. https://doi.org/10.1021/cm070356a-
dc.relation.referencesen96. Buda C., Dunietz B., J. Phys. Chem. B, 2006, 110, 10479. https://doi.org/10.1021/jp061249r-
dc.relation.referencesen97. Rowsell J., Eckert J., Yaghi O., J. Am. Chem. Soc., 2005, 127, 14904. https://doi.org/10.1021/ja0542690-
dc.relation.referencesen98. Lochan R., Head-GordonM., Phys. Chem. Chem. Phys., 2006, 8, 1357. https://doi.org/10.1039/b515409j-
dc.relation.referencesen99. Li Y., Yang R., J. Am. Chem. Soc., 2006, 128, 8136. https://doi.org/10.1021/ja061681m-
dc.relation.referencesen100. Jiang J., Su F., Trewin A. et al., J. Am. Chem. Soc., 2008, 130, 7710. https://doi.org/10.1021/ja8010176-
dc.citation.issue1-
dc.citation.spage85-
dc.citation.epage94-
dc.coverage.placenameЛьвів-
dc.coverage.placenameLviv-
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 1

Files in This Item:
File Description SizeFormat 
2019v13n1_Saldan_I-Physical_sorption_of_molecular_85-94.pdf554.89 kBAdobe PDFView/Open
2019v13n1_Saldan_I-Physical_sorption_of_molecular_85-94__COVER.png530.85 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.