https://oldena.lpnu.ua/handle/ntb/46417
Title: | Fire-resisting composites based on polymer matrix |
Other Titles: | Вогнестійкі композити на основі полімерної матриці |
Authors: | Ushkov, Valentin Figovsky, Oleg Smirnov, Vladimir Seleznev, Vyacheslav |
Affiliation: | Moscow State University of Civil Engineering Israeli Association of Inventors |
Bibliographic description (Ukraine): | Fire-resisting composites based on polymer matrix / Valentin Ushkov, Oleg Figovsky, Vladimir Smirnov, Vyacheslav Seleznev // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 77–84. |
Bibliographic description (International): | Fire-resisting composites based on polymer matrix / Valentin Ushkov, Oleg Figovsky, Vladimir Smirnov, Vyacheslav Seleznev // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 77–84. |
Is part of: | Chemistry & Chemical Technology, 1 (13), 2019 |
Issue: | 1 |
Issue Date: | 28-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | бромвмісні ретарданти займистість горючість епоксидні композити наповнювач пластифікатор похідні ферроцену brominated fire retardants flammability combustibility fume evolution index epoxy matrix composites fillers plasticizers ferrocene derivatives |
Number of pages: | 8 |
Page range: | 77-84 |
Start page: | 77 |
End page: | 84 |
Abstract: | Вивчено термостабільність і пожежно-
технічні параметри епоксидних композитів з різними за-
твердниками, наповнювачами, пластифікаторами та ретар-
дантами. Показано, що вміст мінеральних наповнювачів до
45% мало впливає на займистість. Формування диму
зменшується лінійно з підвищенням ступеня наповнення. Пока-
зано, що для отримання низькогорючих матеріалів кисневий
індекс повинен перевищувати 31 %. Встановлено, що опти-
мальна концентрація промислових бромованих вогнетривких
речовин становить 8–10% за масою. Для зменшення горючості
епоксидних композитів запропоновано використовувати
бромвмісні ретарданти у вигляді розчину в N, N-диметил-2,4,6-
трибромоаніліні. Показана висока ефективність ацетил- та
α-гідроксиетилферроценових додатків для зменшення диму. In the present work we have studied the thermal stability, flammability, and fume evolution of epoxy matrix composites with different types and amounts of hardeners, fillers, plasticizers, and fire retardants. It is shown that chemical composition of fillers has little effect on the flammability of epoxy composites when the content of mineral fillers is less than 45 % by mass. Smoke formation decreases linearly with increase of the filling degree. It is shown that to obtain low-combustible materials the oxygen index should exceed 31 %. It was found that the optimal concentration of industrial brominated fire retardants is 8–10 % by mass. To reduce the flammability of epoxy composites, additive brominated fire retardants in the form of a solution in N,N-dimethyl- 2,4,6-tribromoaniline have been proposed. The high efficiency of acetyl- and α-hydroxyethyl ferrocene as a smoke suppressor of epoxy composites is shown. |
URI: | https://ena.lpnu.ua/handle/ntb/46417 |
Copyright owner: | © Національний університет „Львівська політехніка“, 2019 © Ushkov V., Figovsky O., Smirnov V., Seleznev V., 2019 |
URL for reference material: | https://doi.org/10.1016/j.progpolymsci.2014.08.001 https://doi.org/10.1016/j.proeng.2016.11.873 https://doi.org/10.4028/www.scientific.net/AMR.1040.730 https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(238 https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73 https://doi.org/10.1201/b19693-79 https://doi.org/10.1016/j.proeng.2016.11.929 https://doi.org/10.4028/www.scientific.net/MSF.871.40 https://doi.org/10.1016/j.firesaf.2013.01.009 https://doi.org/10.1016/0379-7112(80)90004-1 https://doi.org/10.3390/ma3104710 https://doi.org/10.1016/j.polymdegradstab.2004.01.027 https://doi.org/10.1016/j.polymdegradstab.2016.03.028 https://doi.org/10.1016/j.firesaf.2013.01.011 https://doi.org/10.1016/j.compositesb.2015.08.066 https://doi.org/10.1016/j.firesaf.2014.08.019 https://doi.org/10.1002/pola.1991.080290711 https://doi.org/10.1016/S0082-0784(06)80690-9 https://doi.org/10.1002/(SICI)1099-0739(199603)10:2<101::AID-AOC484>3.0.CO;2-7 |
References (Ukraine): | 1. Chrusciel J., Lesniak E.: Prog. Polym. Sci., 2015, 41, 67. https://doi.org/10.1016/j.progpolymsci.2014.08.001 2. Khozin V.: Uprochnenie Epoksidnykh Polimerov. Kazan: Izd-vo PIC, Kazan 2004 3. Zaytsev Yu.: Epoxidnye Oligomery i Kompozitsii. Naukova dumka, Kiev 1990. 4. Kochnova Z., Zhavoronok E., Chalykh A.: Epoksidnye Smoly i Otverditeli. Peynt-Media, Moskva 2006. 5. Chernin I., Smekhov F., Zherdev Yu.: Epoxidnye Polimery i Kompozitsii. Khimiya, Moskva 1982. 6. Bazhenov S., Berlin A., Kul'kov A., Oshmyan V.: Polimernye Matrichnye Kompozity – Prohnoct i Tekhnologia. Intelligence, Dolgoprudnyy 2010. 7. Bazhenov Yu.: PodkhodyaschieMaterialy i Tekhnologii dlia Remonta i Reconstruktsii Zdanyi i Sooruzhenyi. Komtekh-Print, Moskva 2006. 8. Stepanova V., Stepanov A., Zhirkov E.: Armirovanie Polimernykh Kompositov. Bumazhnik, Moskva 2013. 9. Shilin A., PshenichnyyV., KartuzovD.:Vneshnee Armirovanie Shlakobetonov Kompozitzionnymi Materialami. Stroyizdat, Moskva 2007. 10. Selyaev V., Ivashchenko Yu., Nizina T.: Polymerbetony. Izdvo Mordovskogo Gos. Univ., Saransk 2016. 11. Gladkikh V., Korolev E., Smirnov V., Sukhachev I.: Procedia Eng., 2016, 165, 1417. https://doi.org/10.1016/j.proeng.2016.11.873 12. BruyakoM., Glukhoedov V., Kravtsova D. et al.: Adv. Mater. Res., 2014, 1040, 730. https://doi.org/10.4028/www.scientific.net/AMR.1040.730 13. Provednikova A. (Ed.): Polimery s Nizkoy Goruchestiy. Khimiya, Moskva 1989. 14. Mikhaylin Yu.: Termostabilnost i Pozharostoikost Polimerov. SFT, Sankt Peterburg 2011. 15. Karbhari V., Chin J., Hunston D. et al.: J. Compos. Constr., 2003, 7, 238. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(238) 16. Bakis C., Bank L., Brown V. et al.: J. Compos. Constr., 2002, 6, 73. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73) 17. Mouritz A., Gibson A.: Fire Properties of Polymer Composite Materials. Springer, Dordrecht 2006. 18. Askadsky A., Ushkov V., Smirnov V.: Proc. Int. Conf. on AdvancedMaterials, Structures andMechanical Engineering ICAMSME 2015, 2016, 365. https://doi.org/10.1201/b19693-79 19. Ushkov V., Kopytin A., Smirnov V., Alimov L.: Procedia Eng., 2016, 165, 1823. https://doi.org/10.1016/j.proeng.2016.11.929 20. Askadsky A., Ushkov V., Smirnov V., Voronin V.: Solid State Phenom., 2016, 871, 40. https://doi.org/10.4028/www.scientific.net/MSF.871.40 21. Papaspyrides C., Kiliaris P. (Eds.): Polymer Green Flame Retardants. Elsevier, Amsterdam 2014. 22. Dufton P.: Flame Retardants for Plastics. Smithers Rapra Press, Shawbury 2003. 23. Kandare E., Kandola B., Myler P.: Fire Safety J., 2013, 58, 112. https://doi.org/10.1016/j.firesaf.2013.01.009 24. Manley T., Sidebotham S.: Fire Safety J., 1980, 3, 25. https://doi.org/10.1016/0379-7112(80)90004-1 25. Georlette P.: Applications of Halogen Flame Retardants. [in:] Horrocks A., Price D. (Eds.), Fire Retardant Materials. Woodhead, Sawston 2001, 264-292. 26. Schartel B.:Materials, 2010, 3, 4710. https://doi.org/10.3390/ma3104710 27. Mauerer O.: Polym. Degrad. Stabil., 2005, 88, 70. https://doi.org/10.1016/j.polymdegradstab.2004.01.027 28. Luo C., Zuo J., Wang F. et al.: Polym. Degrad. Stabil., 2016, 129, 7. https://doi.org/10.1016/j.polymdegradstab.2016.03.028 29. Chen X., Jiao C., Li S., Hu Y.: Fire Safety J., 2013, 58, 208. https://doi.org/10.1016/j.firesaf.2013.01.011 30. Lim K., Bee S., Sin L. et al.: Compos. Part B-Eng., 2016, 84, 155-174. https://doi.org/10.1016/j.compositesb.2015.08.066 31. Naik A., Fontaine G., Samyn F. et al.: Fire Safety J., 2014, 70, 46. https://doi.org/10.1016/j.firesaf.2014.08.019 32. Kishore K., Kannan P., Iyanar K.: J. Polym. Sci. A, 1991, 29, 1039. https://doi.org/10.1002/pola.1991.080290711 33. Zhang J., Megaridis C.: Symp. Combust., 1994, 25, 593. https://doi.org/10.1016/S0082-0784(06)80690-9 34. Carty P., Grant J., Metcalfe E.: Appl. Organometal. Chem., 1996, 10, 101. https://doi.org/10.1002/(SICI)1099-0739(199603)10:2<101::AID-AOC484>3.0.CO;2-7 35. Ushkov V., Lalayan V., Nevzorov D., Lomakin S.: Pozharovzryvobezopasnost', 2013, 22, 25. 36. Ushkov V., Lalayan V., Lomakin S., Nevzorov D.: Pozharovzryvobezopasnost', 2013, 22, 33. 37. Ushkov V., Lalayan V., Lomakin S., Nevzorov D.: Pozharovzryvobezopasnost', 2013, 22, 15. 38. Ushkov V., Abramov V., Grigor'eva L., Kir'yanova L.: Stroitel'nye Mater., 2011, 12, 68. 39. Ushkov V., Grigor'eva L., Abramov V.: VestnikMGSU, 2011, 2, 352. 40. Ushkov V., Nevzorov D., Kopytin A., Lalayan V.: Pozharovzryvobezopasnost', 2014, 23, 27. 41. Ushkov V., Abramov V., Lalayan V., Kir'yanova L.: Pozharovzryvobezopasnost', 2012, 21, 36. 42. Panina N., Chursova L., Babin A. et al.: VseMaterialy. Entsikloped. Spravochn., 2014, 9, 10. 43. Bryk M.: Destryktchia Napolnennykh Polimerov. Khimiya, Moskva 1989. 44. Khalturinskiy N.: VseMaterialy. Entsikloped. Spravochn., 2009, 11, 22. 45. Khalturinskiy N.: VseMaterialy. Entsikloped. Spravochn., 2009, 12, 30. 46. Khalturinskiy N., Rudakova T.: Khim. Fizika, 2008, 27, 73. 47. Kudryavtzev P., FigovskyO.:US Pat. 9695111, Pub. Jul. 4, 2017. |
References (International): | 1. Chrusciel J., Lesniak E., Prog. Polym. Sci., 2015, 41, 67. https://doi.org/10.1016/j.progpolymsci.2014.08.001 2. Khozin V., Uprochnenie Epoksidnykh Polimerov. Kazan: Izd-vo PIC, Kazan 2004 3. Zaytsev Yu., Epoxidnye Oligomery i Kompozitsii. Naukova dumka, Kiev 1990. 4. Kochnova Z., Zhavoronok E., Chalykh A., Epoksidnye Smoly i Otverditeli. Peynt-Media, Moskva 2006. 5. Chernin I., Smekhov F., Zherdev Yu., Epoxidnye Polimery i Kompozitsii. Khimiya, Moskva 1982. 6. Bazhenov S., Berlin A., Kul'kov A., Oshmyan V., Polimernye Matrichnye Kompozity – Prohnoct i Tekhnologia. Intelligence, Dolgoprudnyy 2010. 7. Bazhenov Yu., PodkhodyaschieMaterialy i Tekhnologii dlia Remonta i Reconstruktsii Zdanyi i Sooruzhenyi. Komtekh-Print, Moskva 2006. 8. Stepanova V., Stepanov A., Zhirkov E., Armirovanie Polimernykh Kompositov. Bumazhnik, Moskva 2013. 9. Shilin A., PshenichnyyV., KartuzovD.:Vneshnee Armirovanie Shlakobetonov Kompozitzionnymi Materialami. Stroyizdat, Moskva 2007. 10. Selyaev V., Ivashchenko Yu., Nizina T., Polymerbetony. Izdvo Mordovskogo Gos. Univ., Saransk 2016. 11. Gladkikh V., Korolev E., Smirnov V., Sukhachev I., Procedia Eng., 2016, 165, 1417. https://doi.org/10.1016/j.proeng.2016.11.873 12. BruyakoM., Glukhoedov V., Kravtsova D. et al., Adv. Mater. Res., 2014, 1040, 730. https://doi.org/10.4028/www.scientific.net/AMR.1040.730 13. Provednikova A. (Ed.): Polimery s Nizkoy Goruchestiy. Khimiya, Moskva 1989. 14. Mikhaylin Yu., Termostabilnost i Pozharostoikost Polimerov. SFT, Sankt Peterburg 2011. 15. Karbhari V., Chin J., Hunston D. et al., J. Compos. Constr., 2003, 7, 238. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(238) 16. Bakis C., Bank L., Brown V. et al., J. Compos. Constr., 2002, 6, 73. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73) 17. Mouritz A., Gibson A., Fire Properties of Polymer Composite Materials. Springer, Dordrecht 2006. 18. Askadsky A., Ushkov V., Smirnov V., Proc. Int. Conf. on AdvancedMaterials, Structures andMechanical Engineering ICAMSME 2015, 2016, 365. https://doi.org/10.1201/b19693-79 19. Ushkov V., Kopytin A., Smirnov V., Alimov L., Procedia Eng., 2016, 165, 1823. https://doi.org/10.1016/j.proeng.2016.11.929 20. Askadsky A., Ushkov V., Smirnov V., Voronin V., Solid State Phenom., 2016, 871, 40. https://doi.org/10.4028/www.scientific.net/MSF.871.40 21. Papaspyrides C., Kiliaris P. (Eds.): Polymer Green Flame Retardants. Elsevier, Amsterdam 2014. 22. Dufton P., Flame Retardants for Plastics. Smithers Rapra Press, Shawbury 2003. 23. Kandare E., Kandola B., Myler P., Fire Safety J., 2013, 58, 112. https://doi.org/10.1016/j.firesaf.2013.01.009 24. Manley T., Sidebotham S., Fire Safety J., 1980, 3, 25. https://doi.org/10.1016/0379-7112(80)90004-1 25. Georlette P., Applications of Halogen Flame Retardants. [in:] Horrocks A., Price D. (Eds.), Fire Retardant Materials. Woodhead, Sawston 2001, 264-292. 26. Schartel B.:Materials, 2010, 3, 4710. https://doi.org/10.3390/ma3104710 27. Mauerer O., Polym. Degrad. Stabil., 2005, 88, 70. https://doi.org/10.1016/j.polymdegradstab.2004.01.027 28. Luo C., Zuo J., Wang F. et al., Polym. Degrad. Stabil., 2016, 129, 7. https://doi.org/10.1016/j.polymdegradstab.2016.03.028 29. Chen X., Jiao C., Li S., Hu Y., Fire Safety J., 2013, 58, 208. https://doi.org/10.1016/j.firesaf.2013.01.011 30. Lim K., Bee S., Sin L. et al., Compos. Part B-Eng., 2016, 84, 155-174. https://doi.org/10.1016/j.compositesb.2015.08.066 31. Naik A., Fontaine G., Samyn F. et al., Fire Safety J., 2014, 70, 46. https://doi.org/10.1016/j.firesaf.2014.08.019 32. Kishore K., Kannan P., Iyanar K., J. Polym. Sci. A, 1991, 29, 1039. https://doi.org/10.1002/pola.1991.080290711 33. Zhang J., Megaridis C., Symp. Combust., 1994, 25, 593. https://doi.org/10.1016/S0082-0784(06)80690-9 34. Carty P., Grant J., Metcalfe E., Appl. Organometal. Chem., 1996, 10, 101. https://doi.org/10.1002/(SICI)1099-0739(199603)10:2<101::AID-AOC484>3.0.CO;2-7 35. Ushkov V., Lalayan V., Nevzorov D., Lomakin S., Pozharovzryvobezopasnost', 2013, 22, 25. 36. Ushkov V., Lalayan V., Lomakin S., Nevzorov D., Pozharovzryvobezopasnost', 2013, 22, 33. 37. Ushkov V., Lalayan V., Lomakin S., Nevzorov D., Pozharovzryvobezopasnost', 2013, 22, 15. 38. Ushkov V., Abramov V., Grigor'eva L., Kir'yanova L., Stroitel'nye Mater., 2011, 12, 68. 39. Ushkov V., Grigor'eva L., Abramov V., VestnikMGSU, 2011, 2, 352. 40. Ushkov V., Nevzorov D., Kopytin A., Lalayan V., Pozharovzryvobezopasnost', 2014, 23, 27. 41. Ushkov V., Abramov V., Lalayan V., Kir'yanova L., Pozharovzryvobezopasnost', 2012, 21, 36. 42. Panina N., Chursova L., Babin A. et al., VseMaterialy. Entsikloped. Spravochn., 2014, 9, 10. 43. Bryk M., Destryktchia Napolnennykh Polimerov. Khimiya, Moskva 1989. 44. Khalturinskiy N., VseMaterialy. Entsikloped. Spravochn., 2009, 11, 22. 45. Khalturinskiy N., VseMaterialy. Entsikloped. Spravochn., 2009, 12, 30. 46. Khalturinskiy N., Rudakova T., Khim. Fizika, 2008, 27, 73. 47. Kudryavtzev P., FigovskyO.:US Pat. 9695111, Pub. Jul. 4, 2017. |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 1 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v13n1_Ushkov_V-Fire_resisting_composites_77-84.pdf | 378.53 kB | Adobe PDF | View/Open | |
2019v13n1_Ushkov_V-Fire_resisting_composites_77-84__COVER.png | 548.9 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.