Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46395
Title: Anode behavior of silver in the solution of rhamnolipid
Other Titles: Анодна поведінка срібла у розчинах рамноліпіду
Authors: Мерцало, Іванна Павлівна
Бондаренко, А. Б.
Мазур, А. С.
Кунтий, Орест Іванович
Mertsalo, I. P.
Bondarenko, A. B.
Mazur, A. S.
Kuntyi, O. I.
Affiliation: Національний університет “Львівська політехніка”
Lviv Polytechnic National University
Bibliographic description (Ukraine): Anode behavior of silver in the solution of rhamnolipid / I. P. Mertsalo, A. B. Bondarenko, A. S. Mazur, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 2. — С. 7–11.
Bibliographic description (International): Anode behavior of silver in the solution of rhamnolipid / I. P. Mertsalo, A. B. Bondarenko, A. S. Mazur, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 2. — P. 7–11.
Is part of: Chemistry, Technology and Application of Substances, 2 (2), 2019
Issue: 2
Issue Date: 28-Feb-2019
Publisher: Lviv Politechnic Publishing House
Lviv Politechnic Publishing House
Place of the edition/event: Lviv
Lviv
Keywords: срібло
рамноліпід
вольтамперометрія
анодне розчинення
температурний коефіцієнт
енергія активації
silver
rhamnolipid
voltammetry
anodic dissolution
temperature coefficient
activation energy
Number of pages: 5
Page range: 7-11
Start page: 7
End page: 11
Abstract: Досліджено анодне розчинення срібла у водних розчинах рамноліпіду (RL) залежно від таких параметрів: концентрації RL, температури, рН середовища та швидкості розгортки анодного потенціалу. Показано, що активне розчинення відбувається за Е > 0,4 В у широкому діапазоні концентрацій поверхнево-активної речовини за t = 20–50 оС. З підвищенням концентрації RL температури анодні струми зростають практично лінійно за Е = 0,4–1,0 В. Вони також зростають sз підвищенням значення рН від 7 до 10.
Silver anodic dissolution in aqueous solutions of rhamnolipid (RL) has been investigated depending on the following parameters: concentration of RL, temperature, pH of medium and scanning speed of anode potential. It is shown that the active dissolution occurs at Е > 0.4 V in a wide range of concentrations of the surfactant at t = 20–50 °C. With an increase in the concentration of rhamnolipid and temperature, the anode currents increase almost linearly with E = 0.4–1.0 V. They also increase with an increase in pH from 7 to 10.
URI: https://ena.lpnu.ua/handle/ntb/46395
Copyright owner: © Національний університет „Львівська політехніка“, 2019
References (Ukraine): 1. Syafiuddin, A., Salmiati, Salim, M. R., Kueh, A. B., Hadibarata, T., & Nur, H. (2017). A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. Journal of the Chinese Chemical Society, 64(7), 732-756.
2. García-Barrasa, J., López-De-Luzuriaga, J., & Monge, M. (2011). Silver nanoparticles: Synthesis through chemical methods in solution and biomedical applications. Open Chemistry, 9(1), 7-19
3. Kytsya, A., Bazylyak, L., Hrynda, Y., Horechyy, A., & Medvedevdkikh, Y. (2015). The Kinetic Rate Law for the Autocatalytic Growth of Citrate-Stabilized Silver Nanoparticles. International Journal of Chemical Kinetics, 47(6), 351-360.
4. Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K. & Upadhyay, S. N. (2016). Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry, 6, 34-56.
5. Kumar, N., Salar, R. K., Kumar, R., Prasad, M., Brar, B. & Nain, V. (2018). Green Synthesis of Silver Nanoparticles and its Applications – A Review. Journal of Nanotechnology and Applications, 19, 1-22.
6. Rodríguez-Sánchez, L., Blanco, M. C., & López- Quintela, M. A. (2000). Electrochemical Synthesis of Silver Nanoparticles. The Journal of Physical Chemistry B, 104(41), 9683-9688.
7. Starowicz, M., Stypuła, B., & Banaś, J. (2006). Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications, 8(2), 227-230.
8. Khaydarov, R. A., Khaydarov, R. R., Gapurova, O., Estrin, Y., & Scheper, T. (2008). Electrochemical method for the synthesis of silver nanoparticles. Journal of Nanoparticle Research, 11(5), 1193-1200.
9. Reicha, F. M., Sarhan, A., Abdel-Hamid, M. I., & El-Sherbiny, I. M. (2012). Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydrate Polymers, 89(1), 236-244.
10. Anicai, L., Dobre, N., Petica, A., Buda,M. & Visan, T. (2014). Electrochemical synthesis of silver nanoparticles in aqueous electrolytes. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 76, 127-136.
11. Thuc, D. T., Huy, T. Q., Hoang, L. H., Tien, B. C., Chung, P. V., Thuy, N. T., & Le, A. (2016). Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity. Materials Letters, 181, 173-177.
12. Nasretdinova, G. R., Fazleeva, R. R., Mikhitova, R. K., Nizameev, I. R., Kadirov M. K., Ziganshina, A. Y. & Yanilkin, V. V. (2015). Electrochemical synthesis of silver nanoparticles in solution. Electrochemistry Communications, 50, 69-72.
13. Kuntyi, O. I., Kytsya A. R., Mertsalo I. P., Mazur A. S., Zozula G. I., Bazylyak L. I., Topchak R. V. (2019). Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid Polymer Science, 298, 1-7.
14. Varjani, S. J., & Upasani, V. N. (2017). Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresource Technology, 232,389-397.
15. Stacey S. P., Mclaughlin M. J., Çakmak I., Hettiarachchi G. M., Scheckel K.G., Karkkainen M. (2008). Root uptake of lipophilic zinc-rhamnolipid complexes. Journal of Agricultural and Food Chemistry, 56, 2112-2117.
16. Hogan, D. E., Curry, J. E., Pemberton, J. E., & Maier, R. M. (2017). Rhamnolipid biosurfactant complexation of rare earth elements. Journal of Hazardous Materials, 340, 171-178.
17. Kornii S. А., Pokhmurs’kyi V. І., Kopylets V. I., Zin І. М., Chervins’ka N. R. (2017) Quantum-chemical analysis of the electronic structures of inhibiting complexes of rhamnolipid with metals. Journal of Materials Science, 52(5), 609-619.
References (International): 1. Syafiuddin, A., Salmiati, Salim, M. R., Kueh, A. B., Hadibarata, T., & Nur, H. (2017). A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. Journal of the Chinese Chemical Society, 64(7), 732-756.
2. García-Barrasa, J., López-De-Luzuriaga, J., & Monge, M. (2011). Silver nanoparticles: Synthesis through chemical methods in solution and biomedical applications. Open Chemistry, 9(1), 7-19
3. Kytsya, A., Bazylyak, L., Hrynda, Y., Horechyy, A., & Medvedevdkikh, Y. (2015). The Kinetic Rate Law for the Autocatalytic Growth of Citrate-Stabilized Silver Nanoparticles. International Journal of Chemical Kinetics, 47(6), 351-360.
4. Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K. & Upadhyay, S. N. (2016). Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry, 6, 34-56.
5. Kumar, N., Salar, R. K., Kumar, R., Prasad, M., Brar, B. & Nain, V. (2018). Green Synthesis of Silver Nanoparticles and its Applications – A Review. Journal of Nanotechnology and Applications, 19, 1-22.
6. Rodríguez-Sánchez, L., Blanco, M. C., & López- Quintela, M. A. (2000). Electrochemical Synthesis of Silver Nanoparticles. The Journal of Physical Chemistry B, 104(41), 9683-9688.
7. Starowicz, M., Stypuła, B., & Banaś, J. (2006). Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications, 8(2), 227-230.
8. Khaydarov, R. A., Khaydarov, R. R., Gapurova, O., Estrin, Y., & Scheper, T. (2008). Electrochemical method for the synthesis of silver nanoparticles. Journal of Nanoparticle Research, 11(5), 1193-1200.
9. Reicha, F. M., Sarhan, A., Abdel-Hamid, M. I., & El-Sherbiny, I. M. (2012). Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydrate Polymers, 89(1), 236-244.
10. Anicai, L., Dobre, N., Petica, A., Buda,M. & Visan, T. (2014). Electrochemical synthesis of silver nanoparticles in aqueous electrolytes. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 76, 127-136.
11. Thuc, D. T., Huy, T. Q., Hoang, L. H., Tien, B. C., Chung, P. V., Thuy, N. T., & Le, A. (2016). Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity. Materials Letters, 181, 173-177.
12. Nasretdinova, G. R., Fazleeva, R. R., Mikhitova, R. K., Nizameev, I. R., Kadirov M. K., Ziganshina, A. Y. & Yanilkin, V. V. (2015). Electrochemical synthesis of silver nanoparticles in solution. Electrochemistry Communications, 50, 69-72.
13. Kuntyi, O. I., Kytsya A. R., Mertsalo I. P., Mazur A. S., Zozula G. I., Bazylyak L. I., Topchak R. V. (2019). Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid Polymer Science, 298, 1-7.
14. Varjani, S. J., & Upasani, V. N. (2017). Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresource Technology, 232,389-397.
15. Stacey S. P., Mclaughlin M. J., Çakmak I., Hettiarachchi G. M., Scheckel K.G., Karkkainen M. (2008). Root uptake of lipophilic zinc-rhamnolipid complexes. Journal of Agricultural and Food Chemistry, 56, 2112-2117.
16. Hogan, D. E., Curry, J. E., Pemberton, J. E., & Maier, R. M. (2017). Rhamnolipid biosurfactant complexation of rare earth elements. Journal of Hazardous Materials, 340, 171-178.
17. Kornii S. A., Pokhmurskyi V. I., Kopylets V. I., Zin I. M., Chervinska N. R. (2017) Quantum-chemical analysis of the electronic structures of inhibiting complexes of rhamnolipid with metals. Journal of Materials Science, 52(5), 609-619.
Content type: Article
Appears in Collections:Chemistry, Technology and Application of Substances. – 2019. – Vol. 2, No. 2

Files in This Item:
File Description SizeFormat 
2019v2n2_Mertsalo_I_P-Anode_behavior_of_silver_7-11.pdf744.75 kBAdobe PDFView/Open
2019v2n2_Mertsalo_I_P-Anode_behavior_of_silver_7-11__COVER.png482.4 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.