DC Field | Value | Language |
dc.contributor.author | Мерцало, Іванна Павлівна | |
dc.contributor.author | Бондаренко, А. Б. | |
dc.contributor.author | Мазур, А. С. | |
dc.contributor.author | Кунтий, Орест Іванович | |
dc.contributor.author | Mertsalo, I. P. | |
dc.contributor.author | Bondarenko, A. B. | |
dc.contributor.author | Mazur, A. S. | |
dc.contributor.author | Kuntyi, O. I. | |
dc.date.accessioned | 2020-03-02T09:14:37Z | - |
dc.date.available | 2020-03-02T09:14:37Z | - |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.identifier.citation | Anode behavior of silver in the solution of rhamnolipid / I. P. Mertsalo, A. B. Bondarenko, A. S. Mazur, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 2. — С. 7–11. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46395 | - |
dc.description.abstract | Досліджено анодне розчинення срібла у водних розчинах рамноліпіду (RL) залежно від таких
параметрів: концентрації RL, температури, рН середовища та швидкості розгортки анодного
потенціалу. Показано, що активне розчинення відбувається за Е > 0,4 В у широкому діапазоні
концентрацій поверхнево-активної речовини за t = 20–50 оС. З підвищенням концентрації RL
температури анодні струми зростають практично лінійно за Е = 0,4–1,0 В. Вони також зростають sз
підвищенням значення рН від 7 до 10. | |
dc.description.abstract | Silver anodic dissolution in aqueous solutions of rhamnolipid (RL) has been investigated
depending on the following parameters: concentration of RL, temperature, pH of medium and
scanning speed of anode potential. It is shown that the active dissolution occurs at Е > 0.4 V in a
wide range of concentrations of the surfactant at t = 20–50 °C. With an increase in the
concentration of rhamnolipid and temperature, the anode currents increase almost linearly with E = 0.4–1.0 V. They also increase with an increase in pH from 7 to 10. | |
dc.format.extent | 7-11 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (2), 2019 | |
dc.subject | срібло | |
dc.subject | рамноліпід | |
dc.subject | вольтамперометрія | |
dc.subject | анодне розчинення | |
dc.subject | температурний коефіцієнт | |
dc.subject | енергія активації | |
dc.subject | silver | |
dc.subject | rhamnolipid | |
dc.subject | voltammetry | |
dc.subject | anodic dissolution | |
dc.subject | temperature coefficient | |
dc.subject | activation energy | |
dc.title | Anode behavior of silver in the solution of rhamnolipid | |
dc.title.alternative | Анодна поведінка срібла у розчинах рамноліпіду | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.format.pages | 5 | |
dc.identifier.citationen | Anode behavior of silver in the solution of rhamnolipid / I. P. Mertsalo, A. B. Bondarenko, A. S. Mazur, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 2. — P. 7–11. | |
dc.relation.references | 1. Syafiuddin, A., Salmiati, Salim, M. R., Kueh, A. B., Hadibarata, T., & Nur, H. (2017). A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. Journal of the Chinese Chemical Society, 64(7), 732-756. | |
dc.relation.references | 2. García-Barrasa, J., López-De-Luzuriaga, J., & Monge, M. (2011). Silver nanoparticles: Synthesis through chemical methods in solution and biomedical applications. Open Chemistry, 9(1), 7-19 | |
dc.relation.references | 3. Kytsya, A., Bazylyak, L., Hrynda, Y., Horechyy, A., & Medvedevdkikh, Y. (2015). The Kinetic Rate Law for the Autocatalytic Growth of Citrate-Stabilized Silver Nanoparticles. International Journal of Chemical Kinetics, 47(6), 351-360. | |
dc.relation.references | 4. Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K. & Upadhyay, S. N. (2016). Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry, 6, 34-56. | |
dc.relation.references | 5. Kumar, N., Salar, R. K., Kumar, R., Prasad, M., Brar, B. & Nain, V. (2018). Green Synthesis of Silver Nanoparticles and its Applications – A Review. Journal of Nanotechnology and Applications, 19, 1-22. | |
dc.relation.references | 6. Rodríguez-Sánchez, L., Blanco, M. C., & López- Quintela, M. A. (2000). Electrochemical Synthesis of Silver Nanoparticles. The Journal of Physical Chemistry B, 104(41), 9683-9688. | |
dc.relation.references | 7. Starowicz, M., Stypuła, B., & Banaś, J. (2006). Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications, 8(2), 227-230. | |
dc.relation.references | 8. Khaydarov, R. A., Khaydarov, R. R., Gapurova, O., Estrin, Y., & Scheper, T. (2008). Electrochemical method for the synthesis of silver nanoparticles. Journal of Nanoparticle Research, 11(5), 1193-1200. | |
dc.relation.references | 9. Reicha, F. M., Sarhan, A., Abdel-Hamid, M. I., & El-Sherbiny, I. M. (2012). Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydrate Polymers, 89(1), 236-244. | |
dc.relation.references | 10. Anicai, L., Dobre, N., Petica, A., Buda,M. & Visan, T. (2014). Electrochemical synthesis of silver nanoparticles in aqueous electrolytes. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 76, 127-136. | |
dc.relation.references | 11. Thuc, D. T., Huy, T. Q., Hoang, L. H., Tien, B. C., Chung, P. V., Thuy, N. T., & Le, A. (2016). Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity. Materials Letters, 181, 173-177. | |
dc.relation.references | 12. Nasretdinova, G. R., Fazleeva, R. R., Mikhitova, R. K., Nizameev, I. R., Kadirov M. K., Ziganshina, A. Y. & Yanilkin, V. V. (2015). Electrochemical synthesis of silver nanoparticles in solution. Electrochemistry Communications, 50, 69-72. | |
dc.relation.references | 13. Kuntyi, O. I., Kytsya A. R., Mertsalo I. P., Mazur A. S., Zozula G. I., Bazylyak L. I., Topchak R. V. (2019). Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid Polymer Science, 298, 1-7. | |
dc.relation.references | 14. Varjani, S. J., & Upasani, V. N. (2017). Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresource Technology, 232,389-397. | |
dc.relation.references | 15. Stacey S. P., Mclaughlin M. J., Çakmak I., Hettiarachchi G. M., Scheckel K.G., Karkkainen M. (2008). Root uptake of lipophilic zinc-rhamnolipid complexes. Journal of Agricultural and Food Chemistry, 56, 2112-2117. | |
dc.relation.references | 16. Hogan, D. E., Curry, J. E., Pemberton, J. E., & Maier, R. M. (2017). Rhamnolipid biosurfactant complexation of rare earth elements. Journal of Hazardous Materials, 340, 171-178. | |
dc.relation.references | 17. Kornii S. А., Pokhmurs’kyi V. І., Kopylets V. I., Zin І. М., Chervins’ka N. R. (2017) Quantum-chemical analysis of the electronic structures of inhibiting complexes of rhamnolipid with metals. Journal of Materials Science, 52(5), 609-619. | |
dc.relation.referencesen | 1. Syafiuddin, A., Salmiati, Salim, M. R., Kueh, A. B., Hadibarata, T., & Nur, H. (2017). A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. Journal of the Chinese Chemical Society, 64(7), 732-756. | |
dc.relation.referencesen | 2. García-Barrasa, J., López-De-Luzuriaga, J., & Monge, M. (2011). Silver nanoparticles: Synthesis through chemical methods in solution and biomedical applications. Open Chemistry, 9(1), 7-19 | |
dc.relation.referencesen | 3. Kytsya, A., Bazylyak, L., Hrynda, Y., Horechyy, A., & Medvedevdkikh, Y. (2015). The Kinetic Rate Law for the Autocatalytic Growth of Citrate-Stabilized Silver Nanoparticles. International Journal of Chemical Kinetics, 47(6), 351-360. | |
dc.relation.referencesen | 4. Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K. & Upadhyay, S. N. (2016). Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry, 6, 34-56. | |
dc.relation.referencesen | 5. Kumar, N., Salar, R. K., Kumar, R., Prasad, M., Brar, B. & Nain, V. (2018). Green Synthesis of Silver Nanoparticles and its Applications – A Review. Journal of Nanotechnology and Applications, 19, 1-22. | |
dc.relation.referencesen | 6. Rodríguez-Sánchez, L., Blanco, M. C., & López- Quintela, M. A. (2000). Electrochemical Synthesis of Silver Nanoparticles. The Journal of Physical Chemistry B, 104(41), 9683-9688. | |
dc.relation.referencesen | 7. Starowicz, M., Stypuła, B., & Banaś, J. (2006). Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications, 8(2), 227-230. | |
dc.relation.referencesen | 8. Khaydarov, R. A., Khaydarov, R. R., Gapurova, O., Estrin, Y., & Scheper, T. (2008). Electrochemical method for the synthesis of silver nanoparticles. Journal of Nanoparticle Research, 11(5), 1193-1200. | |
dc.relation.referencesen | 9. Reicha, F. M., Sarhan, A., Abdel-Hamid, M. I., & El-Sherbiny, I. M. (2012). Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydrate Polymers, 89(1), 236-244. | |
dc.relation.referencesen | 10. Anicai, L., Dobre, N., Petica, A., Buda,M. & Visan, T. (2014). Electrochemical synthesis of silver nanoparticles in aqueous electrolytes. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 76, 127-136. | |
dc.relation.referencesen | 11. Thuc, D. T., Huy, T. Q., Hoang, L. H., Tien, B. C., Chung, P. V., Thuy, N. T., & Le, A. (2016). Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity. Materials Letters, 181, 173-177. | |
dc.relation.referencesen | 12. Nasretdinova, G. R., Fazleeva, R. R., Mikhitova, R. K., Nizameev, I. R., Kadirov M. K., Ziganshina, A. Y. & Yanilkin, V. V. (2015). Electrochemical synthesis of silver nanoparticles in solution. Electrochemistry Communications, 50, 69-72. | |
dc.relation.referencesen | 13. Kuntyi, O. I., Kytsya A. R., Mertsalo I. P., Mazur A. S., Zozula G. I., Bazylyak L. I., Topchak R. V. (2019). Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid Polymer Science, 298, 1-7. | |
dc.relation.referencesen | 14. Varjani, S. J., & Upasani, V. N. (2017). Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresource Technology, 232,389-397. | |
dc.relation.referencesen | 15. Stacey S. P., Mclaughlin M. J., Çakmak I., Hettiarachchi G. M., Scheckel K.G., Karkkainen M. (2008). Root uptake of lipophilic zinc-rhamnolipid complexes. Journal of Agricultural and Food Chemistry, 56, 2112-2117. | |
dc.relation.referencesen | 16. Hogan, D. E., Curry, J. E., Pemberton, J. E., & Maier, R. M. (2017). Rhamnolipid biosurfactant complexation of rare earth elements. Journal of Hazardous Materials, 340, 171-178. | |
dc.relation.referencesen | 17. Kornii S. A., Pokhmurskyi V. I., Kopylets V. I., Zin I. M., Chervinska N. R. (2017) Quantum-chemical analysis of the electronic structures of inhibiting complexes of rhamnolipid with metals. Journal of Materials Science, 52(5), 609-619. | |
dc.citation.issue | 2 | |
dc.citation.spage | 7 | |
dc.citation.epage | 11 | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry, Technology and Application of Substances. – 2019. – Vol. 2, No. 2
|