Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46395
Full metadata record
DC FieldValueLanguage
dc.contributor.authorМерцало, Іванна Павлівна
dc.contributor.authorБондаренко, А. Б.
dc.contributor.authorМазур, А. С.
dc.contributor.authorКунтий, Орест Іванович
dc.contributor.authorMertsalo, I. P.
dc.contributor.authorBondarenko, A. B.
dc.contributor.authorMazur, A. S.
dc.contributor.authorKuntyi, O. I.
dc.date.accessioned2020-03-02T09:14:37Z-
dc.date.available2020-03-02T09:14:37Z-
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.identifier.citationAnode behavior of silver in the solution of rhamnolipid / I. P. Mertsalo, A. B. Bondarenko, A. S. Mazur, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 2. — С. 7–11.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46395-
dc.description.abstractДосліджено анодне розчинення срібла у водних розчинах рамноліпіду (RL) залежно від таких параметрів: концентрації RL, температури, рН середовища та швидкості розгортки анодного потенціалу. Показано, що активне розчинення відбувається за Е > 0,4 В у широкому діапазоні концентрацій поверхнево-активної речовини за t = 20–50 оС. З підвищенням концентрації RL температури анодні струми зростають практично лінійно за Е = 0,4–1,0 В. Вони також зростають sз підвищенням значення рН від 7 до 10.
dc.description.abstractSilver anodic dissolution in aqueous solutions of rhamnolipid (RL) has been investigated depending on the following parameters: concentration of RL, temperature, pH of medium and scanning speed of anode potential. It is shown that the active dissolution occurs at Е > 0.4 V in a wide range of concentrations of the surfactant at t = 20–50 °C. With an increase in the concentration of rhamnolipid and temperature, the anode currents increase almost linearly with E = 0.4–1.0 V. They also increase with an increase in pH from 7 to 10.
dc.format.extent7-11
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (2), 2019
dc.subjectсрібло
dc.subjectрамноліпід
dc.subjectвольтамперометрія
dc.subjectанодне розчинення
dc.subjectтемпературний коефіцієнт
dc.subjectенергія активації
dc.subjectsilver
dc.subjectrhamnolipid
dc.subjectvoltammetry
dc.subjectanodic dissolution
dc.subjecttemperature coefficient
dc.subjectactivation energy
dc.titleAnode behavior of silver in the solution of rhamnolipid
dc.title.alternativeАнодна поведінка срібла у розчинах рамноліпіду
dc.typeArticle
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages5
dc.identifier.citationenAnode behavior of silver in the solution of rhamnolipid / I. P. Mertsalo, A. B. Bondarenko, A. S. Mazur, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 2. — P. 7–11.
dc.relation.references1. Syafiuddin, A., Salmiati, Salim, M. R., Kueh, A. B., Hadibarata, T., & Nur, H. (2017). A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. Journal of the Chinese Chemical Society, 64(7), 732-756.
dc.relation.references2. García-Barrasa, J., López-De-Luzuriaga, J., & Monge, M. (2011). Silver nanoparticles: Synthesis through chemical methods in solution and biomedical applications. Open Chemistry, 9(1), 7-19
dc.relation.references3. Kytsya, A., Bazylyak, L., Hrynda, Y., Horechyy, A., & Medvedevdkikh, Y. (2015). The Kinetic Rate Law for the Autocatalytic Growth of Citrate-Stabilized Silver Nanoparticles. International Journal of Chemical Kinetics, 47(6), 351-360.
dc.relation.references4. Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K. & Upadhyay, S. N. (2016). Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry, 6, 34-56.
dc.relation.references5. Kumar, N., Salar, R. K., Kumar, R., Prasad, M., Brar, B. & Nain, V. (2018). Green Synthesis of Silver Nanoparticles and its Applications – A Review. Journal of Nanotechnology and Applications, 19, 1-22.
dc.relation.references6. Rodríguez-Sánchez, L., Blanco, M. C., & López- Quintela, M. A. (2000). Electrochemical Synthesis of Silver Nanoparticles. The Journal of Physical Chemistry B, 104(41), 9683-9688.
dc.relation.references7. Starowicz, M., Stypuła, B., & Banaś, J. (2006). Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications, 8(2), 227-230.
dc.relation.references8. Khaydarov, R. A., Khaydarov, R. R., Gapurova, O., Estrin, Y., & Scheper, T. (2008). Electrochemical method for the synthesis of silver nanoparticles. Journal of Nanoparticle Research, 11(5), 1193-1200.
dc.relation.references9. Reicha, F. M., Sarhan, A., Abdel-Hamid, M. I., & El-Sherbiny, I. M. (2012). Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydrate Polymers, 89(1), 236-244.
dc.relation.references10. Anicai, L., Dobre, N., Petica, A., Buda,M. & Visan, T. (2014). Electrochemical synthesis of silver nanoparticles in aqueous electrolytes. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 76, 127-136.
dc.relation.references11. Thuc, D. T., Huy, T. Q., Hoang, L. H., Tien, B. C., Chung, P. V., Thuy, N. T., & Le, A. (2016). Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity. Materials Letters, 181, 173-177.
dc.relation.references12. Nasretdinova, G. R., Fazleeva, R. R., Mikhitova, R. K., Nizameev, I. R., Kadirov M. K., Ziganshina, A. Y. & Yanilkin, V. V. (2015). Electrochemical synthesis of silver nanoparticles in solution. Electrochemistry Communications, 50, 69-72.
dc.relation.references13. Kuntyi, O. I., Kytsya A. R., Mertsalo I. P., Mazur A. S., Zozula G. I., Bazylyak L. I., Topchak R. V. (2019). Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid Polymer Science, 298, 1-7.
dc.relation.references14. Varjani, S. J., & Upasani, V. N. (2017). Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresource Technology, 232,389-397.
dc.relation.references15. Stacey S. P., Mclaughlin M. J., Çakmak I., Hettiarachchi G. M., Scheckel K.G., Karkkainen M. (2008). Root uptake of lipophilic zinc-rhamnolipid complexes. Journal of Agricultural and Food Chemistry, 56, 2112-2117.
dc.relation.references16. Hogan, D. E., Curry, J. E., Pemberton, J. E., & Maier, R. M. (2017). Rhamnolipid biosurfactant complexation of rare earth elements. Journal of Hazardous Materials, 340, 171-178.
dc.relation.references17. Kornii S. А., Pokhmurs’kyi V. І., Kopylets V. I., Zin І. М., Chervins’ka N. R. (2017) Quantum-chemical analysis of the electronic structures of inhibiting complexes of rhamnolipid with metals. Journal of Materials Science, 52(5), 609-619.
dc.relation.referencesen1. Syafiuddin, A., Salmiati, Salim, M. R., Kueh, A. B., Hadibarata, T., & Nur, H. (2017). A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. Journal of the Chinese Chemical Society, 64(7), 732-756.
dc.relation.referencesen2. García-Barrasa, J., López-De-Luzuriaga, J., & Monge, M. (2011). Silver nanoparticles: Synthesis through chemical methods in solution and biomedical applications. Open Chemistry, 9(1), 7-19
dc.relation.referencesen3. Kytsya, A., Bazylyak, L., Hrynda, Y., Horechyy, A., & Medvedevdkikh, Y. (2015). The Kinetic Rate Law for the Autocatalytic Growth of Citrate-Stabilized Silver Nanoparticles. International Journal of Chemical Kinetics, 47(6), 351-360.
dc.relation.referencesen4. Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K. & Upadhyay, S. N. (2016). Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry, 6, 34-56.
dc.relation.referencesen5. Kumar, N., Salar, R. K., Kumar, R., Prasad, M., Brar, B. & Nain, V. (2018). Green Synthesis of Silver Nanoparticles and its Applications – A Review. Journal of Nanotechnology and Applications, 19, 1-22.
dc.relation.referencesen6. Rodríguez-Sánchez, L., Blanco, M. C., & López- Quintela, M. A. (2000). Electrochemical Synthesis of Silver Nanoparticles. The Journal of Physical Chemistry B, 104(41), 9683-9688.
dc.relation.referencesen7. Starowicz, M., Stypuła, B., & Banaś, J. (2006). Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications, 8(2), 227-230.
dc.relation.referencesen8. Khaydarov, R. A., Khaydarov, R. R., Gapurova, O., Estrin, Y., & Scheper, T. (2008). Electrochemical method for the synthesis of silver nanoparticles. Journal of Nanoparticle Research, 11(5), 1193-1200.
dc.relation.referencesen9. Reicha, F. M., Sarhan, A., Abdel-Hamid, M. I., & El-Sherbiny, I. M. (2012). Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydrate Polymers, 89(1), 236-244.
dc.relation.referencesen10. Anicai, L., Dobre, N., Petica, A., Buda,M. & Visan, T. (2014). Electrochemical synthesis of silver nanoparticles in aqueous electrolytes. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 76, 127-136.
dc.relation.referencesen11. Thuc, D. T., Huy, T. Q., Hoang, L. H., Tien, B. C., Chung, P. V., Thuy, N. T., & Le, A. (2016). Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity. Materials Letters, 181, 173-177.
dc.relation.referencesen12. Nasretdinova, G. R., Fazleeva, R. R., Mikhitova, R. K., Nizameev, I. R., Kadirov M. K., Ziganshina, A. Y. & Yanilkin, V. V. (2015). Electrochemical synthesis of silver nanoparticles in solution. Electrochemistry Communications, 50, 69-72.
dc.relation.referencesen13. Kuntyi, O. I., Kytsya A. R., Mertsalo I. P., Mazur A. S., Zozula G. I., Bazylyak L. I., Topchak R. V. (2019). Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid Polymer Science, 298, 1-7.
dc.relation.referencesen14. Varjani, S. J., & Upasani, V. N. (2017). Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresource Technology, 232,389-397.
dc.relation.referencesen15. Stacey S. P., Mclaughlin M. J., Çakmak I., Hettiarachchi G. M., Scheckel K.G., Karkkainen M. (2008). Root uptake of lipophilic zinc-rhamnolipid complexes. Journal of Agricultural and Food Chemistry, 56, 2112-2117.
dc.relation.referencesen16. Hogan, D. E., Curry, J. E., Pemberton, J. E., & Maier, R. M. (2017). Rhamnolipid biosurfactant complexation of rare earth elements. Journal of Hazardous Materials, 340, 171-178.
dc.relation.referencesen17. Kornii S. A., Pokhmurskyi V. I., Kopylets V. I., Zin I. M., Chervinska N. R. (2017) Quantum-chemical analysis of the electronic structures of inhibiting complexes of rhamnolipid with metals. Journal of Materials Science, 52(5), 609-619.
dc.citation.issue2
dc.citation.spage7
dc.citation.epage11
dc.coverage.placenameLviv
dc.coverage.placenameLviv
Appears in Collections:Chemistry, Technology and Application of Substances. – 2019. – Vol. 2, No. 2

Files in This Item:
File Description SizeFormat 
2019v2n2_Mertsalo_I_P-Anode_behavior_of_silver_7-11.pdf744.75 kBAdobe PDFView/Open
2019v2n2_Mertsalo_I_P-Anode_behavior_of_silver_7-11__COVER.png482.4 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.