https://oldena.lpnu.ua/handle/ntb/46384
Title: | Phase vapor–liquid equilibrium for the solutions of dimethylzinc and dimethyl selenide |
Other Titles: | Фазова рівновага пара–рідина розчинів диметилцинку та диметилселену |
Authors: | Герасимчук, С. І. Полюжин, І. П. Мельник, Г. В. Павловський, Ю. П. Сергеєв, В. В. Gerasymchuk, S. I. Poliuzhyn, I. P. Melnyk, H. V. Pavlovskyi, Yu. P. Sergeyev, V. V. |
Affiliation: | Національний університет “Львівська політехніка” Lviv Polytechnic National University |
Bibliographic description (Ukraine): | Phase vapor–liquid equilibrium for the solutions of dimethylzinc and dimethyl selenide / S. I. Gerasymchuk, I. P. Poliuzhyn, H. V. Melnyk, Yu. P. Pavlovskyi, V. V. Sergeyev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 2. — С. 1–6. |
Bibliographic description (International): | Phase vapor–liquid equilibrium for the solutions of dimethylzinc and dimethyl selenide / S. I. Gerasymchuk, I. P. Poliuzhyn, H. V. Melnyk, Yu. P. Pavlovskyi, V. V. Sergeyev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 2. — P. 1–6. |
Is part of: | Chemistry, Technology and Application of Substances, 2 (2), 2019 |
Issue: | 2 |
Issue Date: | 28-Feb-2019 |
Publisher: | Lviv Politechnic Publishing House Lviv Politechnic Publishing House |
Place of the edition/event: | Lviv Lviv |
Keywords: | диметилцинк диметилселен розчин тиск насиченої пари діаграма стану коефіцієнти активності азеотроп надлишкові функції змішування dimethylzinc dimethyl selenide solution saturated vapor pressure diagram of the state activity coefficients azeotrope excess functions of mixing |
Number of pages: | 6 |
Page range: | 1-6 |
Start page: | 1 |
End page: | 6 |
Abstract: | Розглянуто парорідинну рівновагу розчину диметилцинк-диметилселен. Для опису цієї
рівноваги запропоновано модель Вільсона. Використано дані щодо температурної залежності тиску
насиченої пари високочистих зразків диметилцинку, диметилселену та їх еквімолекулярного
розчину, отриманих тензиметричним методом. Застосовуючи математичний пакет програм Mathсad
14, методом ітерацій розраховано параметри моделі Вільсона. На основі цих параметрів пораховано
коефіцієнти активності компонентів розчину, надлишкові функції розчину: HE, GE, “зв’язана енергія”
TSE. Побудовано ізотермічні Р-Х діаграми стану системи диметилцинк-диметилселен. За
результатами розрахунків зроблено висновки: про від’ємне відхилення даної системи від закону
Рауля та про гомогенність розчину в усьому інтервалі концентрацій та температур (280–340 К). The paper is devoted to the vapor-liquid equilibrium for solution of dimethylzincdimethylselenide. For the description of this equilibriumWilson’s model is proposed. We used data obtained by the tensometric method on the temperature dependence of the saturated vapor pressure for high-purity samples of dimethylzinc, dimethyl selenide and their equimolecular solution. Using the mathematical program package MathCAD 14, the Wilson’s model parameters were calculated by the iterative method. On basis of these parameters calculation were provided for the activity coefficients of the solution components, the excess functions of the solution: HE, GE, and the “bound energy” as TSE. Isothermal P-X diagrams of the state were graphed for the dimethylzinc dimethylselenide system. From these calculations, the following conclusions were made: about the negative deviation of this system from the Raoult’s law and about the homogeneity of the solution within the range of all concentrations and temperatures (280–340 K). |
URI: | https://ena.lpnu.ua/handle/ntb/46384 |
Copyright owner: | © Національний університет „Львівська політехніка“, 2019 |
References (Ukraine): | 1. Gerasimchuk, S. I., Pavlovskii, Y. P., & Van-Chin- Syan, Y. Y. (2012). Thermodynamics of the evaporation of dimethylzinc, dimethylselenium, and their equimolecular solutions. Russian Journal of Physical Chemistry A,86(10), 1500-1506. doi:10.1134/ s003602441210010x 2. Gerasimchuk, S. I., Pavlovskii, Y. P., Sobechko, I. B., & Van-Chin-Syan, Y. Y. (2014). Thermodynamics of the vaporization of alkyl compounds of zinc, selenium, cadmium, tellurium, and their equimolecular solutions. Russian Journal of Physical Chemistry A, 88(3), 365-371. doi:10.1134/s0036024414030054 3. Aleksandrov, Ju. I. (1975). Tochnaja kriometrija organicheskih veshhestv. Leningrad: Himija. 4. Kulagina, T. G. (1988). Termodinamicheskie svojstva jekvimolekuljarnyh kompleksov dimetilcinkdimetilselen, trimetilgallij-trimetilmysh’jak v oblasti 0-330, XII Vsesojuzn. konf. po kalorimetrii i himicheskoj termodinamike. Tez. dokl. Gor’kij. 5. Kulagina, T. G., & Lebedev B. V. (1990). Termodinamika kompleksov metil’nyh i jetil’nyh proizvodnyh selena, cinka i tellura v oblasti 0-330 K, VI Vsesojuzn. konf. po termodinamike organicheskih soedinenij. Tez. dokl. Minsk, Respúblika Belarús’ 6. Poling, B. E., Prausnitz, J. M., & OConnell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill. 7. Scatchard, G., & Hamer, W. J. (1935). The Application of Equations for the Chemical Potentials to Partially Miscible Solutions. Journal of the American Chemical Society, 57(10), 1805-1809. doi:10.1021/ja01313a016 8. Wilson, G. M. (1964). Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society, 86(2), 127-130. doi:10.1021/ ja01056a002 9. Suncov, Ju. K., & Vlasov, M V. (2010). Fazovye ravnovesija zhidkost’-par i termodinamicheskie svojstva rastvorov n-propanol-dimetilketon, n-propanol-metiljetilketon. Vestn. Voronezhskogo gos. univer., (2), 41-47. 10. Guo, B., Bai, J., Li, Y., Xia, S., & Ma, P. (2012). Isobaric vapor–liquid equilibrium for four binary systems of 3-methylthiophene. Fluid Phase Equilibria, 320, 26-31. doi:10.1016/ j.fluid.2012.02.005 11. Londoño, A., Jongmans, M. T., Schuur, B., & Haan, A. B. (2012). Isobaric low pressure vapor–liquid equilibrium data for the binary system monochloroacetic acid dichloroacetic acid. Fluid Phase Equilibria, 313, 97-101. doi:10.1016/j.fluid.2011.09.020 12. Dell’Era, C., Pokki, J., Uusi-Kyyny, P., Pakkanen, M., & Alopaeus, V. (2010). Vapour–liquid equilibrium for the systems diethyl sulphide 1-butene, cis-2-butene, 2-methylpropane, 2-methylpropene, n-butane, trans-2-butene. Fluid Phase Equilibria, 291(2), 180-187. doi:10.1016/ j.fluid.2010.01.006 13. Lladosa, E., Martínez, N. F., Montón, J. B., & Torre, J. D. (2011). Measurements and correlation of vapour–liquid equilibria of 2-butanone and hydrocarbons binary systems at two different pressures. Fluid Phase Equilibria,307(1), 24-29. doi:10.1016/j.fluid.2011.05.004 14. Gupta, B. S., & Lee, M. (2012). Isobaric vapor–liquid equilibrium for the binary mixtures of nonane with cyclohexane, toluene, m-xylene, or p-xylene at 101.3kPa. Fluid Phase Equilibria, 313, 190-195. doi:10.1016/ j.fluid.2011.10.009 15. Mejía, A., Segura, H., Cartes, M., & Pérez-Correa, J. R. (2012). Experimental determination and theoretical modeling of the vapor–liquid equilibrium and surface tensions of hexane tetrahydro-2H-pyran. Fluid Phase Equilibria, 316, 55-65. doi:10.1016/j.fluid.2011.12.007 16. Yadav, S. S., Mali, N. A., Joshi, S. S., &Chavan, P. V. (2017). Isobaric Vapor–Liquid Equilibrium Data for the Binary Systems of Dimethyl Carbonate with Xylene Isomers at 93.13 kPa. Journal of Chemical & Engineering Data,62(8), 2436-2442. doi:10.1021/acs.jced.7b00372 17. Serheiev, V. (2013). Khimichna termodynamika spoluk akrylovoho riadu. (Dys. dokt. khim. nauk). Natsionalnyi Universytet Ukrainy “Lvivska Politekhnika”, Lviv. 18. Porshnev, S. V., & Belenkova, I. V. (2005). Chislennye metody na baze Mathcad. Sankt-Peterburg: BHV-Peterburg. 19. Naryshkin, D. G. (2016). Himicheskaja termodinamika s Mathcad. Moskva: RIOR: INFRA-M. 20. Sergeev, V. V., Gerasimchuk, S. I., & Pavlovskiy, Yu. P. (2019) Termodinamicheskie funktsii smesheniya metilmetakrilata s organicheskimi rastvoritelyami. Zhurnal fizicheskoy khimii, 93 (2), A, 188-194. doi:10.1134/ S0044453719020274 21. Serheyev, V., & Thanh, T. V. (2018). Thermodynamic Properties of Butyl Methacrylate Solutions in Organic Solvents. Chemistry & Chemical Technology, 12(1), 7-12. doi:10.23939/chcht12.01.007 22. Sergeev, V. V., & Kos, Y. V. (2017). Thermodynamic functions of the mixing of methacrylic acid in organic solvents. Russian Journal of Physical Chemistry A, 91(11), 2131-2136. doi:10.1134/s003602441711022x 23. Serheyev, V., Kos, Y., & Van-Chin-Syan, Y. (2015). Thermodynamic Properties of Solutions of Ethacrylic Acid in Acetonitrile and Acetic Acid. Chemistry & Chemical Technology, 9(2), 131-135. doi:10.23939/ chcht09.02.131 24. Belousov, V. P. (1970). Teploty smeshenija zhidkostej. Leningrad: Himija. |
References (International): | 1. Gerasimchuk, S. I., Pavlovskii, Y. P., & Van-Chin- Syan, Y. Y. (2012). Thermodynamics of the evaporation of dimethylzinc, dimethylselenium, and their equimolecular solutions. Russian Journal of Physical Chemistry A,86(10), 1500-1506. doi:10.1134/ s003602441210010x 2. Gerasimchuk, S. I., Pavlovskii, Y. P., Sobechko, I. B., & Van-Chin-Syan, Y. Y. (2014). Thermodynamics of the vaporization of alkyl compounds of zinc, selenium, cadmium, tellurium, and their equimolecular solutions. Russian Journal of Physical Chemistry A, 88(3), 365-371. doi:10.1134/s0036024414030054 3. Aleksandrov, Ju. I. (1975). Tochnaja kriometrija organicheskih veshhestv. Leningrad: Himija. 4. Kulagina, T. G. (1988). Termodinamicheskie svojstva jekvimolekuljarnyh kompleksov dimetilcinkdimetilselen, trimetilgallij-trimetilmysh’jak v oblasti 0-330, XII Vsesojuzn. konf. po kalorimetrii i himicheskoj termodinamike. Tez. dokl. Gor’kij. 5. Kulagina, T. G., & Lebedev B. V. (1990). Termodinamika kompleksov metil’nyh i jetil’nyh proizvodnyh selena, cinka i tellura v oblasti 0-330 K, VI Vsesojuzn. konf. po termodinamike organicheskih soedinenij. Tez. dokl. Minsk, Respúblika Belarús’ 6. Poling, B. E., Prausnitz, J. M., & OConnell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill. 7. Scatchard, G., & Hamer, W. J. (1935). The Application of Equations for the Chemical Potentials to Partially Miscible Solutions. Journal of the American Chemical Society, 57(10), 1805-1809. doi:10.1021/ja01313a016 8. Wilson, G. M. (1964). Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society, 86(2), 127-130. doi:10.1021/ ja01056a002 9. Suncov, Ju. K., & Vlasov, M V. (2010). Fazovye ravnovesija zhidkost’-par i termodinamicheskie svojstva rastvorov n-propanol-dimetilketon, n-propanol-metiljetilketon. Vestn. Voronezhskogo gos. univer., (2), 41-47. 10. Guo, B., Bai, J., Li, Y., Xia, S., & Ma, P. (2012). Isobaric vapor–liquid equilibrium for four binary systems of 3-methylthiophene. Fluid Phase Equilibria, 320, 26-31. doi:10.1016/ j.fluid.2012.02.005 11. Londoño, A., Jongmans, M. T., Schuur, B., & Haan, A. B. (2012). Isobaric low pressure vapor–liquid equilibrium data for the binary system monochloroacetic acid dichloroacetic acid. Fluid Phase Equilibria, 313, 97-101. doi:10.1016/j.fluid.2011.09.020 12. Dell’Era, C., Pokki, J., Uusi-Kyyny, P., Pakkanen, M., & Alopaeus, V. (2010). Vapour–liquid equilibrium for the systems diethyl sulphide 1-butene, cis-2-butene, 2-methylpropane, 2-methylpropene, n-butane, trans-2-butene. Fluid Phase Equilibria, 291(2), 180-187. doi:10.1016/ j.fluid.2010.01.006 13. Lladosa, E., Martínez, N. F., Montón, J. B., & Torre, J. D. (2011). Measurements and correlation of vapour–liquid equilibria of 2-butanone and hydrocarbons binary systems at two different pressures. Fluid Phase Equilibria,307(1), 24-29. doi:10.1016/j.fluid.2011.05.004 14. Gupta, B. S., & Lee, M. (2012). Isobaric vapor–liquid equilibrium for the binary mixtures of nonane with cyclohexane, toluene, m-xylene, or p-xylene at 101.3kPa. Fluid Phase Equilibria, 313, 190-195. doi:10.1016/ j.fluid.2011.10.009 15. Mejía, A., Segura, H., Cartes, M., & Pérez-Correa, J. R. (2012). Experimental determination and theoretical modeling of the vapor–liquid equilibrium and surface tensions of hexane tetrahydro-2H-pyran. Fluid Phase Equilibria, 316, 55-65. doi:10.1016/j.fluid.2011.12.007 16. Yadav, S. S., Mali, N. A., Joshi, S. S., &Chavan, P. V. (2017). Isobaric Vapor–Liquid Equilibrium Data for the Binary Systems of Dimethyl Carbonate with Xylene Isomers at 93.13 kPa. Journal of Chemical & Engineering Data,62(8), 2436-2442. doi:10.1021/acs.jced.7b00372 17. Serheiev, V. (2013). Khimichna termodynamika spoluk akrylovoho riadu. (Dys. dokt. khim. nauk). Natsionalnyi Universytet Ukrainy "Lvivska Politekhnika", Lviv. 18. Porshnev, S. V., & Belenkova, I. V. (2005). Chislennye metody na baze Mathcad. Sankt-Peterburg: BHV-Peterburg. 19. Naryshkin, D. G. (2016). Himicheskaja termodinamika s Mathcad. Moskva: RIOR: INFRA-M. 20. Sergeev, V. V., Gerasimchuk, S. I., & Pavlovskiy, Yu. P. (2019) Termodinamicheskie funktsii smesheniya metilmetakrilata s organicheskimi rastvoritelyami. Zhurnal fizicheskoy khimii, 93 (2), A, 188-194. doi:10.1134/ S0044453719020274 21. Serheyev, V., & Thanh, T. V. (2018). Thermodynamic Properties of Butyl Methacrylate Solutions in Organic Solvents. Chemistry & Chemical Technology, 12(1), 7-12. doi:10.23939/chcht12.01.007 22. Sergeev, V. V., & Kos, Y. V. (2017). Thermodynamic functions of the mixing of methacrylic acid in organic solvents. Russian Journal of Physical Chemistry A, 91(11), 2131-2136. doi:10.1134/s003602441711022x 23. Serheyev, V., Kos, Y., & Van-Chin-Syan, Y. (2015). Thermodynamic Properties of Solutions of Ethacrylic Acid in Acetonitrile and Acetic Acid. Chemistry & Chemical Technology, 9(2), 131-135. doi:10.23939/ chcht09.02.131 24. Belousov, V. P. (1970). Teploty smeshenija zhidkostej. Leningrad: Himija. |
Content type: | Article |
Appears in Collections: | Chemistry, Technology and Application of Substances. – 2019. – Vol. 2, No. 2 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v2n2_Gerasymchuk_S_I-Phase_vapor-liquid_equilibrium_1-6.pdf | 506.58 kB | Adobe PDF | View/Open | |
2019v2n2_Gerasymchuk_S_I-Phase_vapor-liquid_equilibrium_1-6__COVER.png | 487.43 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.