DC Field | Value | Language |
dc.contributor.author | Герасимчук, С. І. | |
dc.contributor.author | Полюжин, І. П. | |
dc.contributor.author | Мельник, Г. В. | |
dc.contributor.author | Павловський, Ю. П. | |
dc.contributor.author | Сергеєв, В. В. | |
dc.contributor.author | Gerasymchuk, S. I. | |
dc.contributor.author | Poliuzhyn, I. P. | |
dc.contributor.author | Melnyk, H. V. | |
dc.contributor.author | Pavlovskyi, Yu. P. | |
dc.contributor.author | Sergeyev, V. V. | |
dc.date.accessioned | 2020-03-02T09:14:30Z | - |
dc.date.available | 2020-03-02T09:14:30Z | - |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.identifier.citation | Phase vapor–liquid equilibrium for the solutions of dimethylzinc and dimethyl selenide / S. I. Gerasymchuk, I. P. Poliuzhyn, H. V. Melnyk, Yu. P. Pavlovskyi, V. V. Sergeyev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 2. — С. 1–6. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46384 | - |
dc.description.abstract | Розглянуто парорідинну рівновагу розчину диметилцинк-диметилселен. Для опису цієї
рівноваги запропоновано модель Вільсона. Використано дані щодо температурної залежності тиску
насиченої пари високочистих зразків диметилцинку, диметилселену та їх еквімолекулярного
розчину, отриманих тензиметричним методом. Застосовуючи математичний пакет програм Mathсad
14, методом ітерацій розраховано параметри моделі Вільсона. На основі цих параметрів пораховано
коефіцієнти активності компонентів розчину, надлишкові функції розчину: HE, GE, “зв’язана енергія”
TSE. Побудовано ізотермічні Р-Х діаграми стану системи диметилцинк-диметилселен. За
результатами розрахунків зроблено висновки: про від’ємне відхилення даної системи від закону
Рауля та про гомогенність розчину в усьому інтервалі концентрацій та температур (280–340 К). | |
dc.description.abstract | The paper is devoted to the vapor-liquid equilibrium for solution of dimethylzincdimethylselenide.
For the description of this equilibriumWilson’s model is proposed. We used data
obtained by the tensometric method on the temperature dependence of the saturated vapor
pressure for high-purity samples of dimethylzinc, dimethyl selenide and their equimolecular
solution. Using the mathematical program package MathCAD 14, the Wilson’s model parameters
were calculated by the iterative method. On basis of these parameters calculation were provided
for the activity coefficients of the solution components, the excess functions of the solution: HE, GE,
and the “bound energy” as TSE. Isothermal P-X diagrams of the state were graphed for the
dimethylzinc dimethylselenide system. From these calculations, the following conclusions were
made: about the negative deviation of this system from the Raoult’s law and about the
homogeneity of the solution within the range of all concentrations and temperatures (280–340 K). | |
dc.format.extent | 1-6 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (2), 2019 | |
dc.subject | диметилцинк | |
dc.subject | диметилселен | |
dc.subject | розчин | |
dc.subject | тиск насиченої пари | |
dc.subject | діаграма стану | |
dc.subject | коефіцієнти активності | |
dc.subject | азеотроп | |
dc.subject | надлишкові функції змішування | |
dc.subject | dimethylzinc | |
dc.subject | dimethyl selenide | |
dc.subject | solution | |
dc.subject | saturated vapor pressure | |
dc.subject | diagram of the state | |
dc.subject | activity coefficients | |
dc.subject | azeotrope | |
dc.subject | excess functions of mixing | |
dc.title | Phase vapor–liquid equilibrium for the solutions of dimethylzinc and dimethyl selenide | |
dc.title.alternative | Фазова рівновага пара–рідина розчинів диметилцинку та диметилселену | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.format.pages | 6 | |
dc.identifier.citationen | Phase vapor–liquid equilibrium for the solutions of dimethylzinc and dimethyl selenide / S. I. Gerasymchuk, I. P. Poliuzhyn, H. V. Melnyk, Yu. P. Pavlovskyi, V. V. Sergeyev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 2. — P. 1–6. | |
dc.relation.references | 1. Gerasimchuk, S. I., Pavlovskii, Y. P., & Van-Chin- Syan, Y. Y. (2012). Thermodynamics of the evaporation of dimethylzinc, dimethylselenium, and their equimolecular solutions. Russian Journal of Physical Chemistry A,86(10), 1500-1506. doi:10.1134/ s003602441210010x | |
dc.relation.references | 2. Gerasimchuk, S. I., Pavlovskii, Y. P., Sobechko, I. B., & Van-Chin-Syan, Y. Y. (2014). Thermodynamics of the vaporization of alkyl compounds of zinc, selenium, cadmium, tellurium, and their equimolecular solutions. Russian Journal of Physical Chemistry A, 88(3), 365-371. doi:10.1134/s0036024414030054 | |
dc.relation.references | 3. Aleksandrov, Ju. I. (1975). Tochnaja kriometrija organicheskih veshhestv. Leningrad: Himija. | |
dc.relation.references | 4. Kulagina, T. G. (1988). Termodinamicheskie svojstva jekvimolekuljarnyh kompleksov dimetilcinkdimetilselen, trimetilgallij-trimetilmysh’jak v oblasti 0-330, XII Vsesojuzn. konf. po kalorimetrii i himicheskoj termodinamike. Tez. dokl. Gor’kij. | |
dc.relation.references | 5. Kulagina, T. G., & Lebedev B. V. (1990). Termodinamika kompleksov metil’nyh i jetil’nyh proizvodnyh selena, cinka i tellura v oblasti 0-330 K, VI Vsesojuzn. konf. po termodinamike organicheskih soedinenij. Tez. dokl. Minsk, Respúblika Belarús’ | |
dc.relation.references | 6. Poling, B. E., Prausnitz, J. M., & OConnell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill. | |
dc.relation.references | 7. Scatchard, G., & Hamer, W. J. (1935). The Application of Equations for the Chemical Potentials to Partially Miscible Solutions. Journal of the American Chemical Society, 57(10), 1805-1809. doi:10.1021/ja01313a016 | |
dc.relation.references | 8. Wilson, G. M. (1964). Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society, 86(2), 127-130. doi:10.1021/ ja01056a002 | |
dc.relation.references | 9. Suncov, Ju. K., & Vlasov, M V. (2010). Fazovye ravnovesija zhidkost’-par i termodinamicheskie svojstva rastvorov n-propanol-dimetilketon, n-propanol-metiljetilketon. Vestn. Voronezhskogo gos. univer., (2), 41-47. | |
dc.relation.references | 10. Guo, B., Bai, J., Li, Y., Xia, S., & Ma, P. (2012). Isobaric vapor–liquid equilibrium for four binary systems of 3-methylthiophene. Fluid Phase Equilibria, 320, 26-31. doi:10.1016/ j.fluid.2012.02.005 | |
dc.relation.references | 11. Londoño, A., Jongmans, M. T., Schuur, B., & Haan, A. B. (2012). Isobaric low pressure vapor–liquid equilibrium data for the binary system monochloroacetic acid dichloroacetic acid. Fluid Phase Equilibria, 313, 97-101. doi:10.1016/j.fluid.2011.09.020 | |
dc.relation.references | 12. Dell’Era, C., Pokki, J., Uusi-Kyyny, P., Pakkanen, M., & Alopaeus, V. (2010). Vapour–liquid equilibrium for the systems diethyl sulphide 1-butene, cis-2-butene, 2-methylpropane, 2-methylpropene, n-butane, trans-2-butene. Fluid Phase Equilibria, 291(2), 180-187. doi:10.1016/ j.fluid.2010.01.006 | |
dc.relation.references | 13. Lladosa, E., Martínez, N. F., Montón, J. B., & Torre, J. D. (2011). Measurements and correlation of vapour–liquid equilibria of 2-butanone and hydrocarbons binary systems at two different pressures. Fluid Phase Equilibria,307(1), 24-29. doi:10.1016/j.fluid.2011.05.004 | |
dc.relation.references | 14. Gupta, B. S., & Lee, M. (2012). Isobaric vapor–liquid equilibrium for the binary mixtures of nonane with cyclohexane, toluene, m-xylene, or p-xylene at 101.3kPa. Fluid Phase Equilibria, 313, 190-195. doi:10.1016/ j.fluid.2011.10.009 | |
dc.relation.references | 15. Mejía, A., Segura, H., Cartes, M., & Pérez-Correa, J. R. (2012). Experimental determination and theoretical modeling of the vapor–liquid equilibrium and surface tensions of hexane tetrahydro-2H-pyran. Fluid Phase Equilibria, 316, 55-65. doi:10.1016/j.fluid.2011.12.007 | |
dc.relation.references | 16. Yadav, S. S., Mali, N. A., Joshi, S. S., &Chavan, P. V. (2017). Isobaric Vapor–Liquid Equilibrium Data for the Binary Systems of Dimethyl Carbonate with Xylene Isomers at 93.13 kPa. Journal of Chemical & Engineering Data,62(8), 2436-2442. doi:10.1021/acs.jced.7b00372 | |
dc.relation.references | 17. Serheiev, V. (2013). Khimichna termodynamika spoluk akrylovoho riadu. (Dys. dokt. khim. nauk). Natsionalnyi Universytet Ukrainy “Lvivska Politekhnika”, Lviv. | |
dc.relation.references | 18. Porshnev, S. V., & Belenkova, I. V. (2005). Chislennye metody na baze Mathcad. Sankt-Peterburg: BHV-Peterburg. | |
dc.relation.references | 19. Naryshkin, D. G. (2016). Himicheskaja termodinamika s Mathcad. Moskva: RIOR: INFRA-M. | |
dc.relation.references | 20. Sergeev, V. V., Gerasimchuk, S. I., & Pavlovskiy, Yu. P. (2019) Termodinamicheskie funktsii smesheniya metilmetakrilata s organicheskimi rastvoritelyami. Zhurnal fizicheskoy khimii, 93 (2), A, 188-194. doi:10.1134/ S0044453719020274 | |
dc.relation.references | 21. Serheyev, V., & Thanh, T. V. (2018). Thermodynamic Properties of Butyl Methacrylate Solutions in Organic Solvents. Chemistry & Chemical Technology, 12(1), 7-12. doi:10.23939/chcht12.01.007 | |
dc.relation.references | 22. Sergeev, V. V., & Kos, Y. V. (2017). Thermodynamic functions of the mixing of methacrylic acid in organic solvents. Russian Journal of Physical Chemistry A, 91(11), 2131-2136. doi:10.1134/s003602441711022x | |
dc.relation.references | 23. Serheyev, V., Kos, Y., & Van-Chin-Syan, Y. (2015). Thermodynamic Properties of Solutions of Ethacrylic Acid in Acetonitrile and Acetic Acid. Chemistry & Chemical Technology, 9(2), 131-135. doi:10.23939/ chcht09.02.131 | |
dc.relation.references | 24. Belousov, V. P. (1970). Teploty smeshenija zhidkostej. Leningrad: Himija. | |
dc.relation.referencesen | 1. Gerasimchuk, S. I., Pavlovskii, Y. P., & Van-Chin- Syan, Y. Y. (2012). Thermodynamics of the evaporation of dimethylzinc, dimethylselenium, and their equimolecular solutions. Russian Journal of Physical Chemistry A,86(10), 1500-1506. doi:10.1134/ s003602441210010x | |
dc.relation.referencesen | 2. Gerasimchuk, S. I., Pavlovskii, Y. P., Sobechko, I. B., & Van-Chin-Syan, Y. Y. (2014). Thermodynamics of the vaporization of alkyl compounds of zinc, selenium, cadmium, tellurium, and their equimolecular solutions. Russian Journal of Physical Chemistry A, 88(3), 365-371. doi:10.1134/s0036024414030054 | |
dc.relation.referencesen | 3. Aleksandrov, Ju. I. (1975). Tochnaja kriometrija organicheskih veshhestv. Leningrad: Himija. | |
dc.relation.referencesen | 4. Kulagina, T. G. (1988). Termodinamicheskie svojstva jekvimolekuljarnyh kompleksov dimetilcinkdimetilselen, trimetilgallij-trimetilmysh’jak v oblasti 0-330, XII Vsesojuzn. konf. po kalorimetrii i himicheskoj termodinamike. Tez. dokl. Gor’kij. | |
dc.relation.referencesen | 5. Kulagina, T. G., & Lebedev B. V. (1990). Termodinamika kompleksov metil’nyh i jetil’nyh proizvodnyh selena, cinka i tellura v oblasti 0-330 K, VI Vsesojuzn. konf. po termodinamike organicheskih soedinenij. Tez. dokl. Minsk, Respúblika Belarús’ | |
dc.relation.referencesen | 6. Poling, B. E., Prausnitz, J. M., & OConnell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill. | |
dc.relation.referencesen | 7. Scatchard, G., & Hamer, W. J. (1935). The Application of Equations for the Chemical Potentials to Partially Miscible Solutions. Journal of the American Chemical Society, 57(10), 1805-1809. doi:10.1021/ja01313a016 | |
dc.relation.referencesen | 8. Wilson, G. M. (1964). Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society, 86(2), 127-130. doi:10.1021/ ja01056a002 | |
dc.relation.referencesen | 9. Suncov, Ju. K., & Vlasov, M V. (2010). Fazovye ravnovesija zhidkost’-par i termodinamicheskie svojstva rastvorov n-propanol-dimetilketon, n-propanol-metiljetilketon. Vestn. Voronezhskogo gos. univer., (2), 41-47. | |
dc.relation.referencesen | 10. Guo, B., Bai, J., Li, Y., Xia, S., & Ma, P. (2012). Isobaric vapor–liquid equilibrium for four binary systems of 3-methylthiophene. Fluid Phase Equilibria, 320, 26-31. doi:10.1016/ j.fluid.2012.02.005 | |
dc.relation.referencesen | 11. Londoño, A., Jongmans, M. T., Schuur, B., & Haan, A. B. (2012). Isobaric low pressure vapor–liquid equilibrium data for the binary system monochloroacetic acid dichloroacetic acid. Fluid Phase Equilibria, 313, 97-101. doi:10.1016/j.fluid.2011.09.020 | |
dc.relation.referencesen | 12. Dell’Era, C., Pokki, J., Uusi-Kyyny, P., Pakkanen, M., & Alopaeus, V. (2010). Vapour–liquid equilibrium for the systems diethyl sulphide 1-butene, cis-2-butene, 2-methylpropane, 2-methylpropene, n-butane, trans-2-butene. Fluid Phase Equilibria, 291(2), 180-187. doi:10.1016/ j.fluid.2010.01.006 | |
dc.relation.referencesen | 13. Lladosa, E., Martínez, N. F., Montón, J. B., & Torre, J. D. (2011). Measurements and correlation of vapour–liquid equilibria of 2-butanone and hydrocarbons binary systems at two different pressures. Fluid Phase Equilibria,307(1), 24-29. doi:10.1016/j.fluid.2011.05.004 | |
dc.relation.referencesen | 14. Gupta, B. S., & Lee, M. (2012). Isobaric vapor–liquid equilibrium for the binary mixtures of nonane with cyclohexane, toluene, m-xylene, or p-xylene at 101.3kPa. Fluid Phase Equilibria, 313, 190-195. doi:10.1016/ j.fluid.2011.10.009 | |
dc.relation.referencesen | 15. Mejía, A., Segura, H., Cartes, M., & Pérez-Correa, J. R. (2012). Experimental determination and theoretical modeling of the vapor–liquid equilibrium and surface tensions of hexane tetrahydro-2H-pyran. Fluid Phase Equilibria, 316, 55-65. doi:10.1016/j.fluid.2011.12.007 | |
dc.relation.referencesen | 16. Yadav, S. S., Mali, N. A., Joshi, S. S., &Chavan, P. V. (2017). Isobaric Vapor–Liquid Equilibrium Data for the Binary Systems of Dimethyl Carbonate with Xylene Isomers at 93.13 kPa. Journal of Chemical & Engineering Data,62(8), 2436-2442. doi:10.1021/acs.jced.7b00372 | |
dc.relation.referencesen | 17. Serheiev, V. (2013). Khimichna termodynamika spoluk akrylovoho riadu. (Dys. dokt. khim. nauk). Natsionalnyi Universytet Ukrainy "Lvivska Politekhnika", Lviv. | |
dc.relation.referencesen | 18. Porshnev, S. V., & Belenkova, I. V. (2005). Chislennye metody na baze Mathcad. Sankt-Peterburg: BHV-Peterburg. | |
dc.relation.referencesen | 19. Naryshkin, D. G. (2016). Himicheskaja termodinamika s Mathcad. Moskva: RIOR: INFRA-M. | |
dc.relation.referencesen | 20. Sergeev, V. V., Gerasimchuk, S. I., & Pavlovskiy, Yu. P. (2019) Termodinamicheskie funktsii smesheniya metilmetakrilata s organicheskimi rastvoritelyami. Zhurnal fizicheskoy khimii, 93 (2), A, 188-194. doi:10.1134/ S0044453719020274 | |
dc.relation.referencesen | 21. Serheyev, V., & Thanh, T. V. (2018). Thermodynamic Properties of Butyl Methacrylate Solutions in Organic Solvents. Chemistry & Chemical Technology, 12(1), 7-12. doi:10.23939/chcht12.01.007 | |
dc.relation.referencesen | 22. Sergeev, V. V., & Kos, Y. V. (2017). Thermodynamic functions of the mixing of methacrylic acid in organic solvents. Russian Journal of Physical Chemistry A, 91(11), 2131-2136. doi:10.1134/s003602441711022x | |
dc.relation.referencesen | 23. Serheyev, V., Kos, Y., & Van-Chin-Syan, Y. (2015). Thermodynamic Properties of Solutions of Ethacrylic Acid in Acetonitrile and Acetic Acid. Chemistry & Chemical Technology, 9(2), 131-135. doi:10.23939/ chcht09.02.131 | |
dc.relation.referencesen | 24. Belousov, V. P. (1970). Teploty smeshenija zhidkostej. Leningrad: Himija. | |
dc.citation.issue | 2 | |
dc.citation.spage | 1 | |
dc.citation.epage | 6 | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry, Technology and Application of Substances. – 2019. – Vol. 2, No. 2
|