Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46384
Full metadata record
DC FieldValueLanguage
dc.contributor.authorГерасимчук, С. І.
dc.contributor.authorПолюжин, І. П.
dc.contributor.authorМельник, Г. В.
dc.contributor.authorПавловський, Ю. П.
dc.contributor.authorСергеєв, В. В.
dc.contributor.authorGerasymchuk, S. I.
dc.contributor.authorPoliuzhyn, I. P.
dc.contributor.authorMelnyk, H. V.
dc.contributor.authorPavlovskyi, Yu. P.
dc.contributor.authorSergeyev, V. V.
dc.date.accessioned2020-03-02T09:14:30Z-
dc.date.available2020-03-02T09:14:30Z-
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.identifier.citationPhase vapor–liquid equilibrium for the solutions of dimethylzinc and dimethyl selenide / S. I. Gerasymchuk, I. P. Poliuzhyn, H. V. Melnyk, Yu. P. Pavlovskyi, V. V. Sergeyev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 2. — С. 1–6.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46384-
dc.description.abstractРозглянуто парорідинну рівновагу розчину диметилцинк-диметилселен. Для опису цієї рівноваги запропоновано модель Вільсона. Використано дані щодо температурної залежності тиску насиченої пари високочистих зразків диметилцинку, диметилселену та їх еквімолекулярного розчину, отриманих тензиметричним методом. Застосовуючи математичний пакет програм Mathсad 14, методом ітерацій розраховано параметри моделі Вільсона. На основі цих параметрів пораховано коефіцієнти активності компонентів розчину, надлишкові функції розчину: HE, GE, “зв’язана енергія” TSE. Побудовано ізотермічні Р-Х діаграми стану системи диметилцинк-диметилселен. За результатами розрахунків зроблено висновки: про від’ємне відхилення даної системи від закону Рауля та про гомогенність розчину в усьому інтервалі концентрацій та температур (280–340 К).
dc.description.abstractThe paper is devoted to the vapor-liquid equilibrium for solution of dimethylzincdimethylselenide. For the description of this equilibriumWilson’s model is proposed. We used data obtained by the tensometric method on the temperature dependence of the saturated vapor pressure for high-purity samples of dimethylzinc, dimethyl selenide and their equimolecular solution. Using the mathematical program package MathCAD 14, the Wilson’s model parameters were calculated by the iterative method. On basis of these parameters calculation were provided for the activity coefficients of the solution components, the excess functions of the solution: HE, GE, and the “bound energy” as TSE. Isothermal P-X diagrams of the state were graphed for the dimethylzinc dimethylselenide system. From these calculations, the following conclusions were made: about the negative deviation of this system from the Raoult’s law and about the homogeneity of the solution within the range of all concentrations and temperatures (280–340 K).
dc.format.extent1-6
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (2), 2019
dc.subjectдиметилцинк
dc.subjectдиметилселен
dc.subjectрозчин
dc.subjectтиск насиченої пари
dc.subjectдіаграма стану
dc.subjectкоефіцієнти активності
dc.subjectазеотроп
dc.subjectнадлишкові функції змішування
dc.subjectdimethylzinc
dc.subjectdimethyl selenide
dc.subjectsolution
dc.subjectsaturated vapor pressure
dc.subjectdiagram of the state
dc.subjectactivity coefficients
dc.subjectazeotrope
dc.subjectexcess functions of mixing
dc.titlePhase vapor–liquid equilibrium for the solutions of dimethylzinc and dimethyl selenide
dc.title.alternativeФазова рівновага пара–рідина розчинів диметилцинку та диметилселену
dc.typeArticle
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages6
dc.identifier.citationenPhase vapor–liquid equilibrium for the solutions of dimethylzinc and dimethyl selenide / S. I. Gerasymchuk, I. P. Poliuzhyn, H. V. Melnyk, Yu. P. Pavlovskyi, V. V. Sergeyev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 2. — P. 1–6.
dc.relation.references1. Gerasimchuk, S. I., Pavlovskii, Y. P., & Van-Chin- Syan, Y. Y. (2012). Thermodynamics of the evaporation of dimethylzinc, dimethylselenium, and their equimolecular solutions. Russian Journal of Physical Chemistry A,86(10), 1500-1506. doi:10.1134/ s003602441210010x
dc.relation.references2. Gerasimchuk, S. I., Pavlovskii, Y. P., Sobechko, I. B., & Van-Chin-Syan, Y. Y. (2014). Thermodynamics of the vaporization of alkyl compounds of zinc, selenium, cadmium, tellurium, and their equimolecular solutions. Russian Journal of Physical Chemistry A, 88(3), 365-371. doi:10.1134/s0036024414030054
dc.relation.references3. Aleksandrov, Ju. I. (1975). Tochnaja kriometrija organicheskih veshhestv. Leningrad: Himija.
dc.relation.references4. Kulagina, T. G. (1988). Termodinamicheskie svojstva jekvimolekuljarnyh kompleksov dimetilcinkdimetilselen, trimetilgallij-trimetilmysh’jak v oblasti 0-330, XII Vsesojuzn. konf. po kalorimetrii i himicheskoj termodinamike. Tez. dokl. Gor’kij.
dc.relation.references5. Kulagina, T. G., & Lebedev B. V. (1990). Termodinamika kompleksov metil’nyh i jetil’nyh proizvodnyh selena, cinka i tellura v oblasti 0-330 K, VI Vsesojuzn. konf. po termodinamike organicheskih soedinenij. Tez. dokl. Minsk, Respúblika Belarús’
dc.relation.references6. Poling, B. E., Prausnitz, J. M., & OConnell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill.
dc.relation.references7. Scatchard, G., & Hamer, W. J. (1935). The Application of Equations for the Chemical Potentials to Partially Miscible Solutions. Journal of the American Chemical Society, 57(10), 1805-1809. doi:10.1021/ja01313a016
dc.relation.references8. Wilson, G. M. (1964). Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society, 86(2), 127-130. doi:10.1021/ ja01056a002
dc.relation.references9. Suncov, Ju. K., & Vlasov, M V. (2010). Fazovye ravnovesija zhidkost’-par i termodinamicheskie svojstva rastvorov n-propanol-dimetilketon, n-propanol-metiljetilketon. Vestn. Voronezhskogo gos. univer., (2), 41-47.
dc.relation.references10. Guo, B., Bai, J., Li, Y., Xia, S., & Ma, P. (2012). Isobaric vapor–liquid equilibrium for four binary systems of 3-methylthiophene. Fluid Phase Equilibria, 320, 26-31. doi:10.1016/ j.fluid.2012.02.005
dc.relation.references11. Londoño, A., Jongmans, M. T., Schuur, B., & Haan, A. B. (2012). Isobaric low pressure vapor–liquid equilibrium data for the binary system monochloroacetic acid dichloroacetic acid. Fluid Phase Equilibria, 313, 97-101. doi:10.1016/j.fluid.2011.09.020
dc.relation.references12. Dell’Era, C., Pokki, J., Uusi-Kyyny, P., Pakkanen, M., & Alopaeus, V. (2010). Vapour–liquid equilibrium for the systems diethyl sulphide 1-butene, cis-2-butene, 2-methylpropane, 2-methylpropene, n-butane, trans-2-butene. Fluid Phase Equilibria, 291(2), 180-187. doi:10.1016/ j.fluid.2010.01.006
dc.relation.references13. Lladosa, E., Martínez, N. F., Montón, J. B., & Torre, J. D. (2011). Measurements and correlation of vapour–liquid equilibria of 2-butanone and hydrocarbons binary systems at two different pressures. Fluid Phase Equilibria,307(1), 24-29. doi:10.1016/j.fluid.2011.05.004
dc.relation.references14. Gupta, B. S., & Lee, M. (2012). Isobaric vapor–liquid equilibrium for the binary mixtures of nonane with cyclohexane, toluene, m-xylene, or p-xylene at 101.3kPa. Fluid Phase Equilibria, 313, 190-195. doi:10.1016/ j.fluid.2011.10.009
dc.relation.references15. Mejía, A., Segura, H., Cartes, M., & Pérez-Correa, J. R. (2012). Experimental determination and theoretical modeling of the vapor–liquid equilibrium and surface tensions of hexane tetrahydro-2H-pyran. Fluid Phase Equilibria, 316, 55-65. doi:10.1016/j.fluid.2011.12.007
dc.relation.references16. Yadav, S. S., Mali, N. A., Joshi, S. S., &Chavan, P. V. (2017). Isobaric Vapor–Liquid Equilibrium Data for the Binary Systems of Dimethyl Carbonate with Xylene Isomers at 93.13 kPa. Journal of Chemical & Engineering Data,62(8), 2436-2442. doi:10.1021/acs.jced.7b00372
dc.relation.references17. Serheiev, V. (2013). Khimichna termodynamika spoluk akrylovoho riadu. (Dys. dokt. khim. nauk). Natsionalnyi Universytet Ukrainy “Lvivska Politekhnika”, Lviv.
dc.relation.references18. Porshnev, S. V., & Belenkova, I. V. (2005). Chislennye metody na baze Mathcad. Sankt-Peterburg: BHV-Peterburg.
dc.relation.references19. Naryshkin, D. G. (2016). Himicheskaja termodinamika s Mathcad. Moskva: RIOR: INFRA-M.
dc.relation.references20. Sergeev, V. V., Gerasimchuk, S. I., & Pavlovskiy, Yu. P. (2019) Termodinamicheskie funktsii smesheniya metilmetakrilata s organicheskimi rastvoritelyami. Zhurnal fizicheskoy khimii, 93 (2), A, 188-194. doi:10.1134/ S0044453719020274
dc.relation.references21. Serheyev, V., & Thanh, T. V. (2018). Thermodynamic Properties of Butyl Methacrylate Solutions in Organic Solvents. Chemistry & Chemical Technology, 12(1), 7-12. doi:10.23939/chcht12.01.007
dc.relation.references22. Sergeev, V. V., & Kos, Y. V. (2017). Thermodynamic functions of the mixing of methacrylic acid in organic solvents. Russian Journal of Physical Chemistry A, 91(11), 2131-2136. doi:10.1134/s003602441711022x
dc.relation.references23. Serheyev, V., Kos, Y., & Van-Chin-Syan, Y. (2015). Thermodynamic Properties of Solutions of Ethacrylic Acid in Acetonitrile and Acetic Acid. Chemistry & Chemical Technology, 9(2), 131-135. doi:10.23939/ chcht09.02.131
dc.relation.references24. Belousov, V. P. (1970). Teploty smeshenija zhidkostej. Leningrad: Himija.
dc.relation.referencesen1. Gerasimchuk, S. I., Pavlovskii, Y. P., & Van-Chin- Syan, Y. Y. (2012). Thermodynamics of the evaporation of dimethylzinc, dimethylselenium, and their equimolecular solutions. Russian Journal of Physical Chemistry A,86(10), 1500-1506. doi:10.1134/ s003602441210010x
dc.relation.referencesen2. Gerasimchuk, S. I., Pavlovskii, Y. P., Sobechko, I. B., & Van-Chin-Syan, Y. Y. (2014). Thermodynamics of the vaporization of alkyl compounds of zinc, selenium, cadmium, tellurium, and their equimolecular solutions. Russian Journal of Physical Chemistry A, 88(3), 365-371. doi:10.1134/s0036024414030054
dc.relation.referencesen3. Aleksandrov, Ju. I. (1975). Tochnaja kriometrija organicheskih veshhestv. Leningrad: Himija.
dc.relation.referencesen4. Kulagina, T. G. (1988). Termodinamicheskie svojstva jekvimolekuljarnyh kompleksov dimetilcinkdimetilselen, trimetilgallij-trimetilmysh’jak v oblasti 0-330, XII Vsesojuzn. konf. po kalorimetrii i himicheskoj termodinamike. Tez. dokl. Gor’kij.
dc.relation.referencesen5. Kulagina, T. G., & Lebedev B. V. (1990). Termodinamika kompleksov metil’nyh i jetil’nyh proizvodnyh selena, cinka i tellura v oblasti 0-330 K, VI Vsesojuzn. konf. po termodinamike organicheskih soedinenij. Tez. dokl. Minsk, Respúblika Belarús’
dc.relation.referencesen6. Poling, B. E., Prausnitz, J. M., & OConnell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill.
dc.relation.referencesen7. Scatchard, G., & Hamer, W. J. (1935). The Application of Equations for the Chemical Potentials to Partially Miscible Solutions. Journal of the American Chemical Society, 57(10), 1805-1809. doi:10.1021/ja01313a016
dc.relation.referencesen8. Wilson, G. M. (1964). Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society, 86(2), 127-130. doi:10.1021/ ja01056a002
dc.relation.referencesen9. Suncov, Ju. K., & Vlasov, M V. (2010). Fazovye ravnovesija zhidkost’-par i termodinamicheskie svojstva rastvorov n-propanol-dimetilketon, n-propanol-metiljetilketon. Vestn. Voronezhskogo gos. univer., (2), 41-47.
dc.relation.referencesen10. Guo, B., Bai, J., Li, Y., Xia, S., & Ma, P. (2012). Isobaric vapor–liquid equilibrium for four binary systems of 3-methylthiophene. Fluid Phase Equilibria, 320, 26-31. doi:10.1016/ j.fluid.2012.02.005
dc.relation.referencesen11. Londoño, A., Jongmans, M. T., Schuur, B., & Haan, A. B. (2012). Isobaric low pressure vapor–liquid equilibrium data for the binary system monochloroacetic acid dichloroacetic acid. Fluid Phase Equilibria, 313, 97-101. doi:10.1016/j.fluid.2011.09.020
dc.relation.referencesen12. Dell’Era, C., Pokki, J., Uusi-Kyyny, P., Pakkanen, M., & Alopaeus, V. (2010). Vapour–liquid equilibrium for the systems diethyl sulphide 1-butene, cis-2-butene, 2-methylpropane, 2-methylpropene, n-butane, trans-2-butene. Fluid Phase Equilibria, 291(2), 180-187. doi:10.1016/ j.fluid.2010.01.006
dc.relation.referencesen13. Lladosa, E., Martínez, N. F., Montón, J. B., & Torre, J. D. (2011). Measurements and correlation of vapour–liquid equilibria of 2-butanone and hydrocarbons binary systems at two different pressures. Fluid Phase Equilibria,307(1), 24-29. doi:10.1016/j.fluid.2011.05.004
dc.relation.referencesen14. Gupta, B. S., & Lee, M. (2012). Isobaric vapor–liquid equilibrium for the binary mixtures of nonane with cyclohexane, toluene, m-xylene, or p-xylene at 101.3kPa. Fluid Phase Equilibria, 313, 190-195. doi:10.1016/ j.fluid.2011.10.009
dc.relation.referencesen15. Mejía, A., Segura, H., Cartes, M., & Pérez-Correa, J. R. (2012). Experimental determination and theoretical modeling of the vapor–liquid equilibrium and surface tensions of hexane tetrahydro-2H-pyran. Fluid Phase Equilibria, 316, 55-65. doi:10.1016/j.fluid.2011.12.007
dc.relation.referencesen16. Yadav, S. S., Mali, N. A., Joshi, S. S., &Chavan, P. V. (2017). Isobaric Vapor–Liquid Equilibrium Data for the Binary Systems of Dimethyl Carbonate with Xylene Isomers at 93.13 kPa. Journal of Chemical & Engineering Data,62(8), 2436-2442. doi:10.1021/acs.jced.7b00372
dc.relation.referencesen17. Serheiev, V. (2013). Khimichna termodynamika spoluk akrylovoho riadu. (Dys. dokt. khim. nauk). Natsionalnyi Universytet Ukrainy "Lvivska Politekhnika", Lviv.
dc.relation.referencesen18. Porshnev, S. V., & Belenkova, I. V. (2005). Chislennye metody na baze Mathcad. Sankt-Peterburg: BHV-Peterburg.
dc.relation.referencesen19. Naryshkin, D. G. (2016). Himicheskaja termodinamika s Mathcad. Moskva: RIOR: INFRA-M.
dc.relation.referencesen20. Sergeev, V. V., Gerasimchuk, S. I., & Pavlovskiy, Yu. P. (2019) Termodinamicheskie funktsii smesheniya metilmetakrilata s organicheskimi rastvoritelyami. Zhurnal fizicheskoy khimii, 93 (2), A, 188-194. doi:10.1134/ S0044453719020274
dc.relation.referencesen21. Serheyev, V., & Thanh, T. V. (2018). Thermodynamic Properties of Butyl Methacrylate Solutions in Organic Solvents. Chemistry & Chemical Technology, 12(1), 7-12. doi:10.23939/chcht12.01.007
dc.relation.referencesen22. Sergeev, V. V., & Kos, Y. V. (2017). Thermodynamic functions of the mixing of methacrylic acid in organic solvents. Russian Journal of Physical Chemistry A, 91(11), 2131-2136. doi:10.1134/s003602441711022x
dc.relation.referencesen23. Serheyev, V., Kos, Y., & Van-Chin-Syan, Y. (2015). Thermodynamic Properties of Solutions of Ethacrylic Acid in Acetonitrile and Acetic Acid. Chemistry & Chemical Technology, 9(2), 131-135. doi:10.23939/ chcht09.02.131
dc.relation.referencesen24. Belousov, V. P. (1970). Teploty smeshenija zhidkostej. Leningrad: Himija.
dc.citation.issue2
dc.citation.spage1
dc.citation.epage6
dc.coverage.placenameLviv
dc.coverage.placenameLviv
Appears in Collections:Chemistry, Technology and Application of Substances. – 2019. – Vol. 2, No. 2

Files in This Item:
File Description SizeFormat 
2019v2n2_Gerasymchuk_S_I-Phase_vapor-liquid_equilibrium_1-6.pdf506.58 kBAdobe PDFView/Open
2019v2n2_Gerasymchuk_S_I-Phase_vapor-liquid_equilibrium_1-6__COVER.png487.43 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.