Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46373
Title: Synthesis and properties of silica nanoparticles with functional polymer shell
Other Titles: Синтез та властивості наночастинок діоксиду силіцію з функціональною полімерною оболонкою
Authors: Шевчук, О. М.
Букартик, Н. М.
Надашкевич, З. Я.
Токарев, В. С.
Shevchuk, O. M.
Bukartyk, N. M.
Nadashkevych, Z. Ya.
Tokarev, V. S.
Affiliation: Національний університет “Львівська політехніка”
Lviv Polytechnic National University
Bibliographic description (Ukraine): Synthesis and properties of silica nanoparticles with functional polymer shell / O. M. Shevchuk, N. M. Bukartyk, Z. Ya. Nadashkevych, V. S. Tokarev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 1. — С. 153–158.
Bibliographic description (International): Synthesis and properties of silica nanoparticles with functional polymer shell / O. M. Shevchuk, N. M. Bukartyk, Z. Ya. Nadashkevych, V. S. Tokarev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 1. — P. 153–158.
Is part of: Chemistry, Technology and Application of Substances, 1 (2), 2019
Issue: 1
Issue Date: 28-Feb-2019
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Lviv
Lviv
Keywords: наночастинки
діоксид силіцію
метод Штобера
реакційноздатні кополімери
радикальна кополімеризація
адсорбція
nanoparticles
silica
Shtober process
reactive copolymers
radical copolymerization
adsorption
Number of pages: 6
Page range: 153-158
Start page: 153
End page: 158
Abstract: Наночастинки діоксиду силіцію з функціональною полімерною оболонкою на основі реакційноздатних пероксидовмісних кополімерів синтезовано з використанням золь-гель методу. Отримано унімодальні наночастинки сферичної форми розміром 190–350 нм з низьким коефіцієнтом полідисперсності. Досліджено вплив природи та концентрації кополімеру, концентрації каталізатора, температури на кінетику росту та розмір наночастинок. Формування функціональної пероксидної полімерної оболонки на поверхні наночастинок діоксиду силіцію підтверджено методами газорідинної хроматографії та комплексного термічного аналізу.
Silica nanoparticles with functional polymer shell based on reactive peroxide-containing copolymers were synthesized via sol-gel method. Unimodal nanoparticles of spherical shell with the size of 190–350 nm and low polydispersity index were obtained. The influence of copolymer nature and concentration, catalyst concentration, onto process kinetics and nanoparticle size was studied. The formation of functional polymeric shell on the surface of silica nanoparticles was proved using the methods of gas-liquid chromatography and complex thermal analysis.
URI: https://ena.lpnu.ua/handle/ntb/46373
References (Ukraine): 1. Crosby, A., Lee, J.-Y. (2007). Polymer nanocomposites: the “nano” effect on mechanical properties. Polymer Review, 47(2), 217–229.
2. Ramanathan, T., Abdala, A. A., Stankovich, S. (2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3, 327–331. doi: 10.1038/nnano.2008.96
3. Dubey, R., Rajesh, Y., More, M. (2015). Synthesis and Characterization of SiO2 nanoparticles via sol-gel method for industrial application. Materials Today: Proceedings, 2, 3575–3579.
4. Liu, Y.-L., Wu, C.-S., Chiu, Y.-S., Ho, W.-H. (2003). Preparation, thermal properties, and flame retardance of epoxy–silica hybrid resins. Journal of Polymer Science A., 41, 2354–2367. doi. org/10.1002/pola.10778.
5. Zhang, S., Xu, T., Wu, C. (2006). Synthesis and characterizations of novel, positively charged hybrid membranes from poly (2,6-dimethyl-1,4-phenylene oxide). Journal of Membrane Science, 269, 142–151.
6. Osseo-Asare, K., Arriagada, F. J. (1990). Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids and Surfaces, 50, 321–339. doi:10.1016/0166-6622(90)80273-7.
7. Stober, W., Fink, A., Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Colloid and Interface Science, 26, P. 62.
8. Wu, T. M., Chu, M. S. (2005). Preparation and characterization of thermoplastic vulcanizate/silica nanocomposites. Journal of Applied Polymer Science, 98, 2058–2063.
9. Ahn, S. H., Kim, S. H., Lee, S. G. (2004). Surface-modified silica nanoparticle–reinforced poly (ethylene 2,6-naphthalate). Journal of Applied Polymer Science, 94, 812-818. doi. org/10.1002/app.21007.
10. Tang, J. C., Lin, G. L., Yang, H. C., Jiang, G. J., Chen‐Yang, Y. W. (2007). Polyimide‐silica nanocomposites exhibiting low thermal expansion coefficient and water absorption from surface-modified silica. Journal of Applied Polymer Science., 104, 4096–4105.
11. Petcu, C., Purcar, V., Spataru, C.-I., Alexandrescu, E., Somoghi, R., Trică, B. Jecu, M.-L. (2017) The influence of new hydrophobic silica nanoparticles on the surface properties of the films obtained from bilayer hybrids. Nanomaterials, 7(47), 10p. doi:10.3390/nano7020047.
12. Serdiuk, V. O., Shevchuk, O. M., Pereviznyk, O. B., Bukartyk, N. M., Tokarev, V. S. (2018). Reactive peroxide macroinitiator for crosslinking biocompatible polymers. Bulletin of Lviv Polytechnic Institute, 886, 226–235.
13. Vasilyev, V. P., Glus, L. S., Gubar, S. P. (1985). Elaboration of gas-chromatography method of peroxide monomer analysis. Bulletin of Lviv Polytechnic Institute, 191, 24–26.
14. Toropceva, A. M., Belogorodskaya, K. V., Bondarenko, V. M. (1972). Laboratory Training on Chemistry and Technology of High Molecular Substances. Leningrad, USSR: Khimiya.
15. Masalov, V. M., Sukhinina, N. S., Emelchenko, G. A. Colloidal particles of silicon dioxide for formation of opal-like structures. (2011). Physics of the Solid State, 53 (6), 1072–1076.
References (International): 1. Crosby, A., Lee, J.-Y. (2007). Polymer nanocomposites: the "nano" effect on mechanical properties. Polymer Review, 47(2), 217–229.
2. Ramanathan, T., Abdala, A. A., Stankovich, S. (2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3, 327–331. doi: 10.1038/nnano.2008.96
3. Dubey, R., Rajesh, Y., More, M. (2015). Synthesis and Characterization of SiO2 nanoparticles via sol-gel method for industrial application. Materials Today: Proceedings, 2, 3575–3579.
4. Liu, Y.-L., Wu, C.-S., Chiu, Y.-S., Ho, W.-H. (2003). Preparation, thermal properties, and flame retardance of epoxy–silica hybrid resins. Journal of Polymer Science A., 41, 2354–2367. doi. org/10.1002/pola.10778.
5. Zhang, S., Xu, T., Wu, C. (2006). Synthesis and characterizations of novel, positively charged hybrid membranes from poly (2,6-dimethyl-1,4-phenylene oxide). Journal of Membrane Science, 269, 142–151.
6. Osseo-Asare, K., Arriagada, F. J. (1990). Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids and Surfaces, 50, 321–339. doi:10.1016/0166-6622(90)80273-7.
7. Stober, W., Fink, A., Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Colloid and Interface Science, 26, P. 62.
8. Wu, T. M., Chu, M. S. (2005). Preparation and characterization of thermoplastic vulcanizate/silica nanocomposites. Journal of Applied Polymer Science, 98, 2058–2063.
9. Ahn, S. H., Kim, S. H., Lee, S. G. (2004). Surface-modified silica nanoparticle–reinforced poly (ethylene 2,6-naphthalate). Journal of Applied Polymer Science, 94, 812-818. doi. org/10.1002/app.21007.
10. Tang, J. C., Lin, G. L., Yang, H. C., Jiang, G. J., Chen‐Yang, Y. W. (2007). Polyimide‐silica nanocomposites exhibiting low thermal expansion coefficient and water absorption from surface-modified silica. Journal of Applied Polymer Science., 104, 4096–4105.
11. Petcu, C., Purcar, V., Spataru, C.-I., Alexandrescu, E., Somoghi, R., Trică, B. Jecu, M.-L. (2017) The influence of new hydrophobic silica nanoparticles on the surface properties of the films obtained from bilayer hybrids. Nanomaterials, 7(47), 10p. doi:10.3390/nano7020047.
12. Serdiuk, V. O., Shevchuk, O. M., Pereviznyk, O. B., Bukartyk, N. M., Tokarev, V. S. (2018). Reactive peroxide macroinitiator for crosslinking biocompatible polymers. Bulletin of Lviv Polytechnic Institute, 886, 226–235.
13. Vasilyev, V. P., Glus, L. S., Gubar, S. P. (1985). Elaboration of gas-chromatography method of peroxide monomer analysis. Bulletin of Lviv Polytechnic Institute, 191, 24–26.
14. Toropceva, A. M., Belogorodskaya, K. V., Bondarenko, V. M. (1972). Laboratory Training on Chemistry and Technology of High Molecular Substances. Leningrad, USSR: Khimiya.
15. Masalov, V. M., Sukhinina, N. S., Emelchenko, G. A. Colloidal particles of silicon dioxide for formation of opal-like structures. (2011). Physics of the Solid State, 53 (6), 1072–1076.
Content type: Article
Appears in Collections:Chemistry, Technology and Application of Substances. – 2019. – Vol. 2, No. 1

Files in This Item:
File Description SizeFormat 
2019v2n1_Shevchuk_O_M-Synthesis_and_properties_153-158.pdf698.19 kBAdobe PDFView/Open
2019v2n1_Shevchuk_O_M-Synthesis_and_properties_153-158__COVER.png419.52 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.