https://oldena.lpnu.ua/handle/ntb/46148
Title: | Mathematical model for carbon monoxide oxidation: influence of diffusion effects |
Other Titles: | Математична модель оксидації чадного газу: вплив дифузійних ефектів |
Authors: | Рижа, І. Гайдучок, О. Ryzha, I. Gaiduchok, O. |
Affiliation: | Національний університет “Львівська політехніка” Lviv Polytechnic National University |
Bibliographic description (Ukraine): | Ryzha I. Mathematical model for carbon monoxide oxidation: influence of diffusion effects / I. Ryzha, O. Gaiduchok // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 129–136. |
Bibliographic description (International): | Ryzha I. Mathematical model for carbon monoxide oxidation: influence of diffusion effects / I. Ryzha, O. Gaiduchok // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 129–136. |
Is part of: | Mathematical Modeling and Computing, 1 (6), 2019 |
Issue: | 1 |
Issue Date: | 26-Feb-2019 |
Publisher: | Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
UDC: | 519.876.5 66.011 |
Keywords: | каталітична реакція окиснення реакційно-дифузійна модель математичне моделювання реакційно-дифузійних процесів reaction of catalytic oxidation reaction-diffusion model mathematical modeling of reaction-diffusion processes |
Number of pages: | 8 |
Page range: | 129-136 |
Start page: | 129 |
End page: | 136 |
Abstract: | Досліджено двовимірну математичну модель окиснення монооксиду вуглецю на
поверхні платинового каталізатора згідно з механізмом Ленгмюра–Гіншелвуда, яка
враховує вплив дифузійних ефектів на перебіг реакційно-дифузійних процесів.
Встановлено, що адсорбовані атоми кисню можна вважати нерухомими, а структурні зміни
поверхні каталізатора істотно впливають на характер коливного режиму реакції. A two-dimensional mathematical model for carbon monoxide oxidation on the platinum catalyst surface is investigated according to the Langmuir–Hinshelwood mechanism. This model takes into account the influence of diffusion effects on the course of reaction-diffusion processes. It is established that the diffusion of adsorbed oxygen atoms can be neglected, and the structural changes of the catalyst surface have a significant influence on the character of oscillatory mode of reaction. |
URI: | https://ena.lpnu.ua/handle/ntb/46148 |
Copyright owner: | CMM IAPMM NAS © 2019 Lviv Polytechnic National University |
References (Ukraine): | 1. KrischerK., EiswirthM., ErtlG. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992). 2. ZiffR.M., GulariE., BarshadY. Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56 (24), 2553–2556 (1986). 3. B¨arM., Z¨ulickeC., EiswirthM., ErtlG. Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics. J. Chem. Phys. 96 (11), 8595–8604 (1992). 4. Bzovska I. S., Mryglod I.M. Surface Patterns in Catalytic Carbon Monoxide Oxidation Reaction. Ukr. J. Phys. 61 (2), 134–142 (2016). 5. Qiao L., LiX., Kevrekidis I.G., PuncktC., RotermundH.H. Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation. Phys. Rev. E. 77, 036214 (2008). 6. CisternasY., Holmes P., Kevrekidis I.G., LiX. CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. J. Chem. Phys. 118 (7), 3312–3328 (2003). 7. B¨arM., GottschalkN., EiswirthM., ErtlG. Spiral waves in a surfacereaction: model calculations. J. Chem. Phys. 100 (2), 1202–1214 (1994). 8. PavlenkoN. CO-activator model for reconstructing Pt(100) surfaces: Local microstructures and chemical turbulence. Phys. Rev. E. 77, 026203–1–10 (2008). 9. KostrobijP., Ryzha I., MarkovychB. Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure. Mathematical Modeling and Computing. 5 (2), 158–168 (2018). 10. Langmuir I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans. Faraday Soc. 17, 621–654 (1922). 11. ImbihlR., ErtlG. Oscillatory Kinetics in Heterogeneous Catalysis. Chem. Rev. 95 (3), 697–733 (1995). 12. GritschT., CoulmanD., BehmR. J., ErtlG. Mechanism of the CO-induced (1×2)−(1×1) structural transformation of Pt(110). Phys. Rev. Lett. 63 (10), 1086–1089 (1989). 13. Ladas S., ImbihlR., ErtlG. Microfacetting of a Pt(110) surface during catalytic CO oxidation. Surf. Science. 197 (1–2), 153–182 (1988). 14. Ladas S., ImbihlR., ErtlG. Kinetic oscillations and facetting during the catalytic CO oxidation on Pt(110). Surf. Science. 198 (1–2), 42–68 (1988). 15. von OertzenA., RotermundH.H., NettesheimS. Diffusion of carbon monoxide and oxygen on Pt(110): experiments performed with the PEEM. Surf. Science. 311 (3), 322–330 (1994). 16. van KampenN.G. Stohasticheskie processy v fizike i himii. Vysshaja shkola, Moskva (1990), (in Russian). 17. Bzovska I. S., Mryglod I.M. Chemical oscillations in catalytic CO oxidation reaction. Condens. Matter Phys. 13 (3), 34801:1–5 (2010). 18. ConnorsK.A. Chemical Kinetics: The Study of Reaction Rates in Solution. VCH Publishers, New York (1990). 19. KuchlingH. Physik Nachschlageb¨ucher f¨ur Grundlagenf¨acher. VEB Fachbuchverlag, Leipzig (1973), (in German). 20. PatchettA. J., Meissen F., EngelW., BradshawA.M., ImbihlR. The anatomy of reaction diffusion fronts in the catalytic oxidation of carbon monoxide on platinum (110). Surf. Science. 454 (1), 341–346 (2000). 21. KostrobijP., Ryzha I. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface. Chem. Chem. Technol. 12 (4), 451–455 (2018). |
References (International): | 1. KrischerK., EiswirthM., ErtlG. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992). 2. ZiffR.M., GulariE., BarshadY. Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56 (24), 2553–2556 (1986). 3. B¨arM., Z¨ulickeC., EiswirthM., ErtlG. Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics. J. Chem. Phys. 96 (11), 8595–8604 (1992). 4. Bzovska I. S., Mryglod I.M. Surface Patterns in Catalytic Carbon Monoxide Oxidation Reaction. Ukr. J. Phys. 61 (2), 134–142 (2016). 5. Qiao L., LiX., Kevrekidis I.G., PuncktC., RotermundH.H. Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation. Phys. Rev. E. 77, 036214 (2008). 6. CisternasY., Holmes P., Kevrekidis I.G., LiX. CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. J. Chem. Phys. 118 (7), 3312–3328 (2003). 7. B¨arM., GottschalkN., EiswirthM., ErtlG. Spiral waves in a surfacereaction: model calculations. J. Chem. Phys. 100 (2), 1202–1214 (1994). 8. PavlenkoN. CO-activator model for reconstructing Pt(100) surfaces: Local microstructures and chemical turbulence. Phys. Rev. E. 77, 026203–1–10 (2008). 9. KostrobijP., Ryzha I., MarkovychB. Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure. Mathematical Modeling and Computing. 5 (2), 158–168 (2018). 10. Langmuir I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans. Faraday Soc. 17, 621–654 (1922). 11. ImbihlR., ErtlG. Oscillatory Kinetics in Heterogeneous Catalysis. Chem. Rev. 95 (3), 697–733 (1995). 12. GritschT., CoulmanD., BehmR. J., ErtlG. Mechanism of the CO-induced (1×2)−(1×1) structural transformation of Pt(110). Phys. Rev. Lett. 63 (10), 1086–1089 (1989). 13. Ladas S., ImbihlR., ErtlG. Microfacetting of a Pt(110) surface during catalytic CO oxidation. Surf. Science. 197 (1–2), 153–182 (1988). 14. Ladas S., ImbihlR., ErtlG. Kinetic oscillations and facetting during the catalytic CO oxidation on Pt(110). Surf. Science. 198 (1–2), 42–68 (1988). 15. von OertzenA., RotermundH.H., NettesheimS. Diffusion of carbon monoxide and oxygen on Pt(110): experiments performed with the PEEM. Surf. Science. 311 (3), 322–330 (1994). 16. van KampenN.G. Stohasticheskie processy v fizike i himii. Vysshaja shkola, Moskva (1990), (in Russian). 17. Bzovska I. S., Mryglod I.M. Chemical oscillations in catalytic CO oxidation reaction. Condens. Matter Phys. 13 (3), 34801:1–5 (2010). 18. ConnorsK.A. Chemical Kinetics: The Study of Reaction Rates in Solution. VCH Publishers, New York (1990). 19. KuchlingH. Physik Nachschlageb¨ucher f¨ur Grundlagenf¨acher. VEB Fachbuchverlag, Leipzig (1973), (in German). 20. PatchettA. J., Meissen F., EngelW., BradshawA.M., ImbihlR. The anatomy of reaction diffusion fronts in the catalytic oxidation of carbon monoxide on platinum (110). Surf. Science. 454 (1), 341–346 (2000). 21. KostrobijP., Ryzha I. Two-dimensional mathematical model for carbon monoxide oxidation process on the platinum catalyst surface. Chem. Chem. Technol. 12 (4), 451–455 (2018). |
Content type: | Article |
Appears in Collections: | Mathematical Modeling And Computing. – 2019. – Vol. 6, No. 1 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v6n1_Ryzha_I-Mathematical_model_for_carbon_129-136.pdf | 1.42 MB | Adobe PDF | View/Open | |
2019v6n1_Ryzha_I-Mathematical_model_for_carbon_129-136__COVER.png | 453.17 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.