Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46147
Title: On an invariant of a non-stationary model of pipelines gas flow
Other Titles: Про один інваріант моделі нестаціонарного газового потоку в трубопроводах
Authors: П’янило, Я.
Притула, Н.
Притула, М.
Химко, О.
Pyanylo, Ya.
Prytula, N.
Prytula, M.
Khymko, O.
Affiliation: Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України
“Науково-дослідний інститут транспорту газу” ПАТ “Укртрансгаз”
Centre of Mathematical Modelling of Pidstryhach Institute for Applied Problems of Mechanics and Mathematics NAS of Ukraine
Research and Design Institute of Gas Transport of PJSC “Ukrtransgaz”
Bibliographic description (Ukraine): On an invariant of a non-stationary model of pipelines gas flow / Ya. Pyanylo, N. Prytula, M. Prytula, O. Khymko // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 116–128.
Bibliographic description (International): On an invariant of a non-stationary model of pipelines gas flow / Ya. Pyanylo, N. Prytula, M. Prytula, O. Khymko // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 116–128.
Is part of: Mathematical Modeling and Computing, 1 (6), 2019
Issue: 1
Issue Date: 26-Feb-2019
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
UDC: 622.692.4
622.691.24
Keywords: баланс газу
герметичність газопроводу
алгоритмічний спосіб
витоки газу
математична модель руху газу
gas balance
gas pipeline tightness
algorithmic method
gas leakages
gas flow mathematical model
Number of pages: 13
Page range: 116-128
Start page: 116
End page: 128
Abstract: Розглянуто проблему аналізу балансу газу в об’єктах газотранспортної системи та фактори впливу на точнiсть його встановлення. Показано, що проблему точності розрахунку окремих балансових показників можна ефективно розв’язати, використовуючи встановлені інваріанти математичної моделі руху газу. Проведені числові експерименти підтвердили достатню точність запропонованого підходу.
A problem of gas balance analysis in the gas transportation system objects and the factors of influence on the accuracy of its installation are considered. It is shown that the problem of accuracy of calculation of the individual balance indicators can be effectively solved. For this purpose, the invariants of the mathematical model of gas flow are used. The carried out computational experiments have confirmed the sufficient accuracy of the suggested approach.
URI: https://ena.lpnu.ua/handle/ntb/46147
Copyright owner: CMM IAPMM NAS
© 2019 Lviv Polytechnic National University
References (Ukraine): 1. NavarroA., BegovichO., S´anchez J., BesanconG. Real-Time Leak Isolation Based on State Estimation with Fitting Loss Coefficient Calibration in a Plastic Pipeline. Asian Journal of Control. 19, 255–265 (2017).
2. Murvay P. S., Silea I.A. Survey on gas leak detection and localization techniques. Journal of Loss Prevention in the Process Industries. 25, 966–973 (2012).
3. AsgariH.R., MaghrebiM. F. Application of nodal pressure measurements in leak detection. Flow Measurement and Instrumentation. 50, 128–134 (2016).
4. TaoW., DongyingW., YuP., Wei F. Gas leak localization and detection method based on a multi-point ultrasonic sensor array with TDOA algorithm. Measurement Science and Technology. 26 (2), 095002 (2015). DanetiM. On using double power spectral density information for leak detection. 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town. 1162–1167 (2013).
5. EkuakilleA. L., Vergallo P. Decimated signal diagonalization method for improved spectral leak detection in pipelines. IEEE Sensors Journal. 14 (6), 1741–1748 (2014).
6. HouC.X., Zhang E.H. Pipeline leak detection based on double sensor negative pressure wave. Applied Mechanics and Materials. 313, 1225–1228 (2013).
7. AkopovaG., Dorokhova E., Popov P. Estimation of volumes of methane losses with leaks from the technological equipment of gas transportation objects of USO “Gazprom”. Scientific-technical collection of News Gas Science. 2 (13), 63–67 (2013).
8. PyanyloYa.D., PrytulaM.G., PrytulaN.M. Models of mass transfer in gas transmission systems. Mathematical modeling and computing. 1 (1), 84–96 (2014).
9. PyanyloYa., PrytulaM., PrytulaN. Mathematical models of unstable gas motion in objects of gas transmission systems. Physical-mathematical modeling and informational technologies. 4, 69–77 (2006).
10. AltshulA.D. Hydraulic resistance. Moscow, Nedra (1982), (in Russian).
11. SinchukYu., PrytulaN., PrytulaM. Modeling of non-stationary modes of gas networks. Bulletin of Lviv Polytechnic National University. Computer Sciences and Informational Technologies. 663, 128–132 (2010).
12. DitkinV., PrudnikovA. Handbook of operational calculus. Moscow, High school (1965), (in Russian).
References (International): 1. NavarroA., BegovichO., S´anchez J., BesanconG. Real-Time Leak Isolation Based on State Estimation with Fitting Loss Coefficient Calibration in a Plastic Pipeline. Asian Journal of Control. 19, 255–265 (2017).
2. Murvay P. S., Silea I.A. Survey on gas leak detection and localization techniques. Journal of Loss Prevention in the Process Industries. 25, 966–973 (2012).
3. AsgariH.R., MaghrebiM. F. Application of nodal pressure measurements in leak detection. Flow Measurement and Instrumentation. 50, 128–134 (2016).
4. TaoW., DongyingW., YuP., Wei F. Gas leak localization and detection method based on a multi-point ultrasonic sensor array with TDOA algorithm. Measurement Science and Technology. 26 (2), 095002 (2015). DanetiM. On using double power spectral density information for leak detection. 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town. 1162–1167 (2013).
5. EkuakilleA. L., Vergallo P. Decimated signal diagonalization method for improved spectral leak detection in pipelines. IEEE Sensors Journal. 14 (6), 1741–1748 (2014).
6. HouC.X., Zhang E.H. Pipeline leak detection based on double sensor negative pressure wave. Applied Mechanics and Materials. 313, 1225–1228 (2013).
7. AkopovaG., Dorokhova E., Popov P. Estimation of volumes of methane losses with leaks from the technological equipment of gas transportation objects of USO "Gazprom". Scientific-technical collection of News Gas Science. 2 (13), 63–67 (2013).
8. PyanyloYa.D., PrytulaM.G., PrytulaN.M. Models of mass transfer in gas transmission systems. Mathematical modeling and computing. 1 (1), 84–96 (2014).
9. PyanyloYa., PrytulaM., PrytulaN. Mathematical models of unstable gas motion in objects of gas transmission systems. Physical-mathematical modeling and informational technologies. 4, 69–77 (2006).
10. AltshulA.D. Hydraulic resistance. Moscow, Nedra (1982), (in Russian).
11. SinchukYu., PrytulaN., PrytulaM. Modeling of non-stationary modes of gas networks. Bulletin of Lviv Polytechnic National University. Computer Sciences and Informational Technologies. 663, 128–132 (2010).
12. DitkinV., PrudnikovA. Handbook of operational calculus. Moscow, High school (1965), (in Russian).
Content type: Article
Appears in Collections:Mathematical Modeling And Computing. – 2019. – Vol. 6, No. 1

Files in This Item:
File Description SizeFormat 
2019v6n1_Pyanylo_Ya-On_an_invariant_of_a_non_116-128.pdf1.27 MBAdobe PDFView/Open
2019v6n1_Pyanylo_Ya-On_an_invariant_of_a_non_116-128__COVER.png439.4 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.