DC Field | Value | Language |
dc.contributor.author | П’янило, Я. | |
dc.contributor.author | Притула, Н. | |
dc.contributor.author | Притула, М. | |
dc.contributor.author | Химко, О. | |
dc.contributor.author | Pyanylo, Ya. | |
dc.contributor.author | Prytula, N. | |
dc.contributor.author | Prytula, M. | |
dc.contributor.author | Khymko, O. | |
dc.date.accessioned | 2020-02-27T09:45:17Z | - |
dc.date.available | 2020-02-27T09:45:17Z | - |
dc.date.created | 2019-02-26 | |
dc.date.issued | 2019-02-26 | |
dc.identifier.citation | On an invariant of a non-stationary model of pipelines gas flow / Ya. Pyanylo, N. Prytula, M. Prytula, O. Khymko // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 116–128. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46147 | - |
dc.description.abstract | Розглянуто проблему аналізу балансу газу в об’єктах газотранспортної системи та
фактори впливу на точнiсть його встановлення. Показано, що проблему точності
розрахунку окремих балансових показників можна ефективно розв’язати, використовуючи
встановлені інваріанти математичної моделі руху газу. Проведені числові
експерименти підтвердили достатню точність запропонованого підходу. | |
dc.description.abstract | A problem of gas balance analysis in the gas transportation system objects and the factors
of influence on the accuracy of its installation are considered. It is shown that the problem
of accuracy of calculation of the individual balance indicators can be effectively solved. For
this purpose, the invariants of the mathematical model of gas flow are used. The carried
out computational experiments have confirmed the sufficient accuracy of the suggested approach. | |
dc.format.extent | 116-128 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 1 (6), 2019 | |
dc.subject | баланс газу | |
dc.subject | герметичність газопроводу | |
dc.subject | алгоритмічний спосіб | |
dc.subject | витоки газу | |
dc.subject | математична модель руху газу | |
dc.subject | gas balance | |
dc.subject | gas pipeline tightness | |
dc.subject | algorithmic method | |
dc.subject | gas leakages | |
dc.subject | gas flow mathematical model | |
dc.title | On an invariant of a non-stationary model of pipelines gas flow | |
dc.title.alternative | Про один інваріант моделі нестаціонарного газового потоку в трубопроводах | |
dc.type | Article | |
dc.rights.holder | CMM IAPMM NAS | |
dc.rights.holder | © 2019 Lviv Polytechnic National University | |
dc.contributor.affiliation | Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України | |
dc.contributor.affiliation | “Науково-дослідний інститут транспорту газу” ПАТ “Укртрансгаз” | |
dc.contributor.affiliation | Centre of Mathematical Modelling of Pidstryhach Institute for Applied Problems of Mechanics and Mathematics NAS of Ukraine | |
dc.contributor.affiliation | Research and Design Institute of Gas Transport of PJSC “Ukrtransgaz” | |
dc.format.pages | 13 | |
dc.identifier.citationen | On an invariant of a non-stationary model of pipelines gas flow / Ya. Pyanylo, N. Prytula, M. Prytula, O. Khymko // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 116–128. | |
dc.relation.references | 1. NavarroA., BegovichO., S´anchez J., BesanconG. Real-Time Leak Isolation Based on State Estimation with Fitting Loss Coefficient Calibration in a Plastic Pipeline. Asian Journal of Control. 19, 255–265 (2017). | |
dc.relation.references | 2. Murvay P. S., Silea I.A. Survey on gas leak detection and localization techniques. Journal of Loss Prevention in the Process Industries. 25, 966–973 (2012). | |
dc.relation.references | 3. AsgariH.R., MaghrebiM. F. Application of nodal pressure measurements in leak detection. Flow Measurement and Instrumentation. 50, 128–134 (2016). | |
dc.relation.references | 4. TaoW., DongyingW., YuP., Wei F. Gas leak localization and detection method based on a multi-point ultrasonic sensor array with TDOA algorithm. Measurement Science and Technology. 26 (2), 095002 (2015). DanetiM. On using double power spectral density information for leak detection. 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town. 1162–1167 (2013). | |
dc.relation.references | 5. EkuakilleA. L., Vergallo P. Decimated signal diagonalization method for improved spectral leak detection in pipelines. IEEE Sensors Journal. 14 (6), 1741–1748 (2014). | |
dc.relation.references | 6. HouC.X., Zhang E.H. Pipeline leak detection based on double sensor negative pressure wave. Applied Mechanics and Materials. 313, 1225–1228 (2013). | |
dc.relation.references | 7. AkopovaG., Dorokhova E., Popov P. Estimation of volumes of methane losses with leaks from the technological equipment of gas transportation objects of USO “Gazprom”. Scientific-technical collection of News Gas Science. 2 (13), 63–67 (2013). | |
dc.relation.references | 8. PyanyloYa.D., PrytulaM.G., PrytulaN.M. Models of mass transfer in gas transmission systems. Mathematical modeling and computing. 1 (1), 84–96 (2014). | |
dc.relation.references | 9. PyanyloYa., PrytulaM., PrytulaN. Mathematical models of unstable gas motion in objects of gas transmission systems. Physical-mathematical modeling and informational technologies. 4, 69–77 (2006). | |
dc.relation.references | 10. AltshulA.D. Hydraulic resistance. Moscow, Nedra (1982), (in Russian). | |
dc.relation.references | 11. SinchukYu., PrytulaN., PrytulaM. Modeling of non-stationary modes of gas networks. Bulletin of Lviv Polytechnic National University. Computer Sciences and Informational Technologies. 663, 128–132 (2010). | |
dc.relation.references | 12. DitkinV., PrudnikovA. Handbook of operational calculus. Moscow, High school (1965), (in Russian). | |
dc.relation.referencesen | 1. NavarroA., BegovichO., S´anchez J., BesanconG. Real-Time Leak Isolation Based on State Estimation with Fitting Loss Coefficient Calibration in a Plastic Pipeline. Asian Journal of Control. 19, 255–265 (2017). | |
dc.relation.referencesen | 2. Murvay P. S., Silea I.A. Survey on gas leak detection and localization techniques. Journal of Loss Prevention in the Process Industries. 25, 966–973 (2012). | |
dc.relation.referencesen | 3. AsgariH.R., MaghrebiM. F. Application of nodal pressure measurements in leak detection. Flow Measurement and Instrumentation. 50, 128–134 (2016). | |
dc.relation.referencesen | 4. TaoW., DongyingW., YuP., Wei F. Gas leak localization and detection method based on a multi-point ultrasonic sensor array with TDOA algorithm. Measurement Science and Technology. 26 (2), 095002 (2015). DanetiM. On using double power spectral density information for leak detection. 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town. 1162–1167 (2013). | |
dc.relation.referencesen | 5. EkuakilleA. L., Vergallo P. Decimated signal diagonalization method for improved spectral leak detection in pipelines. IEEE Sensors Journal. 14 (6), 1741–1748 (2014). | |
dc.relation.referencesen | 6. HouC.X., Zhang E.H. Pipeline leak detection based on double sensor negative pressure wave. Applied Mechanics and Materials. 313, 1225–1228 (2013). | |
dc.relation.referencesen | 7. AkopovaG., Dorokhova E., Popov P. Estimation of volumes of methane losses with leaks from the technological equipment of gas transportation objects of USO "Gazprom". Scientific-technical collection of News Gas Science. 2 (13), 63–67 (2013). | |
dc.relation.referencesen | 8. PyanyloYa.D., PrytulaM.G., PrytulaN.M. Models of mass transfer in gas transmission systems. Mathematical modeling and computing. 1 (1), 84–96 (2014). | |
dc.relation.referencesen | 9. PyanyloYa., PrytulaM., PrytulaN. Mathematical models of unstable gas motion in objects of gas transmission systems. Physical-mathematical modeling and informational technologies. 4, 69–77 (2006). | |
dc.relation.referencesen | 10. AltshulA.D. Hydraulic resistance. Moscow, Nedra (1982), (in Russian). | |
dc.relation.referencesen | 11. SinchukYu., PrytulaN., PrytulaM. Modeling of non-stationary modes of gas networks. Bulletin of Lviv Polytechnic National University. Computer Sciences and Informational Technologies. 663, 128–132 (2010). | |
dc.relation.referencesen | 12. DitkinV., PrudnikovA. Handbook of operational calculus. Moscow, High school (1965), (in Russian). | |
dc.citation.issue | 1 | |
dc.citation.spage | 116 | |
dc.citation.epage | 128 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.subject.udc | 622.692.4 | |
dc.subject.udc | 622.691.24 | |
Appears in Collections: | Mathematical Modeling And Computing. – 2019. – Vol. 6, No. 1
|