Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46130
Title: Vibration of orthotropic doubly curved panel with a set of inclusions of arbitrary configuration with different types of connections with the panel
Other Titles: Коливання ортотропної панелі подвійної кривини з множиною включень довільної конфігурації та різними типами з’єднань з панеллю
Authors: Шопа, Т.
Shopa, T.
Affiliation: Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of the National Academy of Sciences of Ukraine
Bibliographic description (Ukraine): Shopa T. Vibration of orthotropic doubly curved panel with a set of inclusions of arbitrary configuration with different types of connections with the panel / T. Shopa // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 221–234.
Bibliographic description (International): Shopa T. Vibration of orthotropic doubly curved panel with a set of inclusions of arbitrary configuration with different types of connections with the panel / T. Shopa // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 221–234.
Is part of: Mathematical Modeling and Computing, 2 (5), 2018
Issue: 2
Issue Date: 26-Feb-2018
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
UDC: 539.3
Keywords: ортотропна панель подвійної кривини
включення
коливання
непрямий метод граничних елементів
orthotropic doubly curved panel
inclusions
vibration
indirect boundary elements method
Number of pages: 14
Page range: 221-234
Start page: 221
End page: 234
Abstract: У межах уточненої теорії оболонок, яка враховує поперечні зсуви та всі інерційні компоненти, побудовано розв’язок задачі про усталені коливання ортотропної панелі подвійної кривини з довлільною кількістю абсолютно жорстких включень довільної форми та розташування. Включення мають різні типи з’єднань з панеллю і здійснюють поступальний рух вздовж нормального напрямку до серединної поверхні панелі. Зовнішня границя панелі довільної геометричної конфігурації. Розглянуто довільні мішані гармонічні в часі граничні умови на зовнішній границі панелі. Розв’язок побудовано на основі непрямого методу граничних елементів. Використано послідовнісний підхід до подання функцій Гріна. Інтегральні рівняння розв’язано методом колокацій.
In the framework of the refined theory of shells, which takes into account transverse shear deformation and all inertial components, the solution of the problem on the steady-state vibration of the orthotropic doubly curved panel with the arbitrary number of absolutely rigid inclusions of the arbitrary geometrical form and location is constructed. The inclusions have different types of connections with the panel and perform the trans lational motion in the normal direction to the middle surface of the panel. The external boundary of the panel is of the arbitrary geometrical configuration. The arbitrary mixed, harmonic in time, boundary conditions are considered on the external boundary of the panel. The solution is built on the basis of the indirect boundary elements method. The sequential approach to the representation of the Green’s functions is used. The integral equations are solved by the collocation method.
URI: https://ena.lpnu.ua/handle/ntb/46130
Copyright owner: CMM IAPMM NASU
© 2018 Lviv Polytechnic National University
References (Ukraine): 1. Mykhas’kiv V., Kunets Ya., Matus V., Khay O. Elastic wave dispersion and attenuation caused by multiple types of disc-shaped inclusions. International Journal of Structural Integrity. 9 (2), 219–232 (2018).
2. Kit H. S., Mykhas’skiv V. V., Khaj O. M. Analysis of the steady oscillations of a plane absolutely rigid inclusion in a three-dimensional elastic body by the boundary element method. Journal of applied mathematics and mechanics. 66 (5), 817–824 (2002).
3. Mykhas’kiv V. V., Khay O. M., Zhang C., Bostr¨om A. Effective dynamic properties of 3D composite materials containing rigid penny-shaped inclusions. Waves in Random and Complex Media. 20 (3), 491–510 (2010).
4. Mykhas’kiv V. Transient response of a plane rigid inclusion to an incident wave in an elastic solid. Wave motion. 41 (2), 133–144 (2005).
5. Kit G. S., Kunets Ya. I., Mykhas’kiv V. V. Interaction of a stationary wave with a thin low stiffness pennyshaped inclusion in an elastic body. Mechanics of solids. 39 (5), 64–70 (2004).
6. Burak Ja. J., Rudavsky Ju. K., Sukhorolsky M. A. Analitychna mechanika lokalno navantazhenyh obolonok. Lviv, Intelekt-Zakhid (2007), (in Ukrainian).
7. Shopa T. Do pobudovy rozvazku zadachi pro kolyvanna ortotropnoi nepolohoji zylindrychnoi paneli z vkluchennam dovilnoi konfigurazii. Mashynoznavstvo. 7, 38–42 (2010), (in Ukrainian).
8. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju vkluchen dovilnoi konfihurazii. Suchasni problemy mechaniky ta matematyky. 2, 187–188 (2013), (in Ukrainian).
9. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju vkluchen dovilnoi konfihurazii z pruzhnymy prosharkamy. Visnyk Ternopilskoho nazionalnonho tekhnichnoho universytety. 1, 71–84 (2013), (in Ukrainian).
10. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju sharnirno opertyh vkluchen dovilnoi konfihurazii. Prykarpatskij visnyk naukovoho tovarystva Shevchenka. 2, 114–121 (2017), (in Ukrainian).
11. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju otvoriv dovilnoji konfihurazii. Visnyk Ternopilskoho nazionalnonho tekhnichnoho universytety. 3, 63–74 (2012), (in Ukrainian).
12. Lighthill J. Introduction to Fourier Analysis and Generalised Functions. Cambridge University Press (1958).
13. Sukhorolsky M. A. Funkzionalni poslidovnosti i rady. Lviv, Rastr-7 (2010), (in Ukrainian)
References (International): 1. Mykhas’kiv V., Kunets Ya., Matus V., Khay O. Elastic wave dispersion and attenuation caused by multiple types of disc-shaped inclusions. International Journal of Structural Integrity. 9 (2), 219–232 (2018).
2. Kit H. S., Mykhas’skiv V. V., Khaj O. M. Analysis of the steady oscillations of a plane absolutely rigid inclusion in a three-dimensional elastic body by the boundary element method. Journal of applied mathematics and mechanics. 66 (5), 817–824 (2002).
3. Mykhas’kiv V. V., Khay O. M., Zhang C., Bostr¨om A. Effective dynamic properties of 3D composite materials containing rigid penny-shaped inclusions. Waves in Random and Complex Media. 20 (3), 491–510 (2010).
4. Mykhas’kiv V. Transient response of a plane rigid inclusion to an incident wave in an elastic solid. Wave motion. 41 (2), 133–144 (2005).
5. Kit G. S., Kunets Ya. I., Mykhas’kiv V. V. Interaction of a stationary wave with a thin low stiffness pennyshaped inclusion in an elastic body. Mechanics of solids. 39 (5), 64–70 (2004).
6. Burak Ja. J., Rudavsky Ju. K., Sukhorolsky M. A. Analitychna mechanika lokalno navantazhenyh obolonok. Lviv, Intelekt-Zakhid (2007), (in Ukrainian).
7. Shopa T. Do pobudovy rozvazku zadachi pro kolyvanna ortotropnoi nepolohoji zylindrychnoi paneli z vkluchennam dovilnoi konfigurazii. Mashynoznavstvo. 7, 38–42 (2010), (in Ukrainian).
8. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju vkluchen dovilnoi konfihurazii. Suchasni problemy mechaniky ta matematyky. 2, 187–188 (2013), (in Ukrainian).
9. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju vkluchen dovilnoi konfihurazii z pruzhnymy prosharkamy. Visnyk Ternopilskoho nazionalnonho tekhnichnoho universytety. 1, 71–84 (2013), (in Ukrainian).
10. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju sharnirno opertyh vkluchen dovilnoi konfihurazii. Prykarpatskij visnyk naukovoho tovarystva Shevchenka. 2, 114–121 (2017), (in Ukrainian).
11. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju otvoriv dovilnoji konfihurazii. Visnyk Ternopilskoho nazionalnonho tekhnichnoho universytety. 3, 63–74 (2012), (in Ukrainian).
12. Lighthill J. Introduction to Fourier Analysis and Generalised Functions. Cambridge University Press (1958).
13. Sukhorolsky M. A. Funkzionalni poslidovnosti i rady. Lviv, Rastr-7 (2010), (in Ukrainian)
Content type: Article
Appears in Collections:Mathematical Modeling And Computing. – 2018. – Vol. 5, No. 2

Files in This Item:
File Description SizeFormat 
2018v5n2_Shopa_T-Vibration_of_orthotropic_221-234.pdf1.39 MBAdobe PDFView/Open
2018v5n2_Shopa_T-Vibration_of_orthotropic_221-234__COVER.png371.96 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.