Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46126
Title: From Brownian motion to molecular simulations
Other Titles: Від броунівського руху до молекулярного комп’ютерного експерименту
Authors: Ровенчак, А.
Трохимчук, А.
Rovenchak, A.
Trokhymchuk, A.
Affiliation: Львівський національний університет імені Івана Франка
Інститут фізики конденсованих систем НАН України
Ivan Franko National University of Lviv
Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine
Bibliographic description (Ukraine): Rovenchak A. From Brownian motion to molecular simulations / A. Rovenchak, A. Trokhymchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 099–107.
Bibliographic description (International): Rovenchak A. From Brownian motion to molecular simulations / A. Rovenchak, A. Trokhymchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 099–107.
Is part of: Mathematical Modeling and Computing, 2 (5), 2018
Issue: 2
Issue Date: 26-Feb-2018
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
UDC: 53(091)
501
533.723
544.77
Keywords: історія науки
метод Монте-Карло
метод молекулярної динаміки
першопринципні ab initio симуляції
history of science
Monte Carlo simulations
molecular dynamics simulations
first principles ab initio simulations
Number of pages: 9
Page range: 099-107
Start page: 099
End page: 107
Abstract: Наведено короткий історичний огляд про внесок двох всесвітньо відомих львівських наукових дослідників — Маріана Смолуховського та Станіслава Улама — у розвиток сучасних галузей фізичної науки, таких як молекулярне моделювання, комп’ютерний експеримент та молекулярна інженерія, висвітлено їх зв’язок із останніми дослідженнями, проведеними у львівських університетах та науково-дослідних установах.
A brief historical overview towards the contribution of two famous Lviv scholars – Marian Smoluchowski and Stanis law Ulam – to the development of modern physical science fields such as molecular modeling and computer simulations is presented and discussed in connection with recent studies carried out in Lviv universities and research institutions.
URI: https://ena.lpnu.ua/handle/ntb/46126
Copyright owner: CMM IAPMM NASU
© 2018 Lviv Polytechnic National University
URL for reference material: https://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html
http://www.iara.org/
http://ktf.lnu.edu.ua/cgi-bin/KTF/select.cgi?Smoluchowski
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-88-9068
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/
http://www.icmp.lviv.ua/pssm2011
http://www.icmp.lviv.ua/statphys2012
http://icmp.lviv.ua/ucsw2017
References (Ukraine): 1. Ingen-Housz J. Bemerkungen ¨uber den Gebrauch des Vergr¨osserungsglases. In: Vermischte Schriften physisch-medicinischen Inhalts. Uibersetzt und herausgegeben von Nicolaus Carl Molitor. Zweyter Band. Wien: Christian Friderich Wappler (1784), S. 121–126 (in German).
2. Brown R. A brief account of microscopical observations made on the particles contained in the pollen of plants. London and Edinburgh Phil. Mag. J. Sci. 4 (21), 161–173 (1828).
3. Mazo R. M. Brownian Motion. Fluctuations, Dynamics, and Applications. Oxford, Clarendon Press (2002).
4. PohlW. G. The theory of Brownian motion — one hundred years old. In: The Global and the Local: The History of Science and the Cultural Integration of Europe, Proceedings of the 2nd International Conference of the European Society for the History of Science (Cracow, 2006), edited by M. Kokowski. The Press of the Polish Academy of Arts and Sciences, Cracow (2007), p. 419–424.
5. https://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html.
6. Perrin J. La loi de Stokes et le mouvement brownien. C. R. Acad. Sci. Paris. 147, 475-476 (1908); idem, L’origine de mouvement brownien. C. R. Acad. Sci. Paris. 147, 530–533 (1908), (in French).
7. Einstein A. Uber die von der molekularkinetischen Theorie der W¨arme geforderte Bewegung von in ruhen- ¨ den Fl¨ussigkeiten suspendierten Teilchen. Ann. Phys. 322 (8), 549–560 (1905), (in German).
8. von Smoluchowski M. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Phys. 326 (14), 756–780 (1906).
9. Badino M. Probability and Statistic in Boltzmann’s Early Papers on Kinetic Theory. Dublin Core, Chicago (2006).
10. Metropolis N., Rosenbluth A. V., Rosenbluth M. N., Teller A. H., Teller E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 21 (6), 1087–1092 (1953).
11. von Smoluchowski M. Akustische Untersuchungen ¨uber die Elasticit¨at weicher K¨orper. Sitzungsber. kaiserl. Akad. Wiss. Wien. Math.-naturwiss. Kl. 103 (II.a), 739–72 (1894), (in German).
12. Montroll E.W. On the Vienna School of statistical thought. AIP Conference Proceedings. 109 (1), 1–10 (1984).
13. Rovenchak A. Lviv period for Smoluchowski: Science, teaching, and beyond. Condens. Matter Phys. 15 (4), 40002 (2012).
14. Mehra J., Rechenberg H. The Historical Development of Quantum Theory. Vol. 5. Springer (2001).
15. Coen D. R. Vienna in the Age of Uncertainty: Science, Liberalism, and Private Life. University of Chicago Press (2007).
16. Teske A. Marian Smoluchowski: ˙zycie i tw´orczo´s´c. PWN, Krak´ow, 1955 (in Polish); German translation: Teske A., Marian Smoluchowski: Leben und Werk, Wroc law–Warszawa–Krak´ow–Gda´nsk, 1977.
17. G´ora P. E. Fluktuacje wok´o l nas. Dziedzictwo Mariana Smoluchowskiego. PAUza Akademicka. Tygodnik Polskiej Akademii Umieje˛tno´sci. 9 (380–381), 4–5 (2017).
18. Ulam S. Marian Smoluchowski and the theory of probabilities in physics. Am. J. Phys. 25 (7), 475–481 (1957).
19. SzymanskiW.W., Posch H. A. Marian Wilhelm Theofil von Smoluchowski. http://www.iara.org/ AerosolPioneers.htm
20. http://ktf.lnu.edu.ua/cgi-bin/KTF/select.cgi?Smoluchowski
21. Hoborski A. Prof. dr Jan Stock wspomnienie po´smiertne. Przegla˛d G´orniczo-Hutniczy. 27, 454–457 (1925), (in Polish).
22. Rovenchak A. Department for Experimental Physics, University of Lviv, in 1872–1939: Contributions to biobibliography. J. Phys. Stud. 22 (4), 4002 (2018).
23. Smoluchowski M. Zarys teoryi kinetycznej ruch´ow Browna i roztwor´ow me˛tnych. Rozpr. Wydz. matem.- przyrodn. Ak. Umieje˛t. Ser. III 6A, 257–281 (1906), (in Polish).
24. Smoluchowski M. Essai d’une th´eorie cin´etique du muovement Brownien et des milieux troubles. Bull. Int. Acad. Sci. Cracovie. Cl. sci. math. nat. 577–602 (1906), (in French).
25. Bodaszewsky L. J. Rauch und Dampf unter dem Mikroskop. Dinglers Polytechn. J. 239, 324–325 (1881), (in German).
26. Kozhushko B. V., Shenderovskyj V. A. Zabute v nauci im’ja (Lukash Bodashevskyj — fizyk i hidromekhanik). Visnyk Nacionalnoho Tekhnichnoho Universytetu “KhPI”. 64, 71–76 (2011), (in Ukrainian).
27. Wr´oblewski A. K. Polish physicists and the progress in physics (1870–1920). Techn. Trans. Fund. Sci. 111 (1), 255–273 (2014).
28. Mehra J. Golden Age Of Theoretical Physics. Vol. 1. World Scientific (2001).
29. Smoluchowski M. Versuch einer mathematischen Theorie der Koagulationskinetic kolloider L¨osungen. Z. Phys. Chem. 92U (1), 129–168 (1917), (in German).
30. Smoluchowski M. Grundriß der Koagulationskinetik kolloider L¨osungen. Kolloid-Zeitschrift. 21, 98–104 (1917), (in German).
31. Mycielski J. Stanis law Marcin Ulam (1909–1984). Rocz. Pol. Tow. Matem. Ser. II: Wiad. Matem. 29, 21–37 (1990), (in Polish).
32. Program Politechniki Lwowskiej na rok akademicki 1933/34. Lw´ow, 1933 (in Polish).
33. Ponedilok G. V., Rovenchak A. A. To the history of theoretical physics studies at the Lviv Polytechnic. J. Phys. Stud. 21, 1003 (2017).
34. Bazylevych L., Guran I., Zarichnyi M. Lw´ow period of S. Ulam’s mathematical creativity. Techn. Trans. Fund. Sci. 2-NP, 33–39 (2015).
35. Ulam S. Adventures of a Mathematician. University of California Press (1976).
36. Eckhardt R. Stan Ulam, John von Neumann, and the Monte Carlo Method. In: From Cardinals to Chaos: Reflections on the life and legacy of Stanislaw Ulam. Cambridge, Cambridge University Press (1989). First published in Los Alamos Science Special Issue, 131–141 (1987); https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-88-9068.
37. Giesler G. C. MCNP software quality: Then and now. Los Alamos National Laboratory Report LA-UR-00-2532 (2000); https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/ LA-UR-00-2532.
38. Gass S. I., Assad A. A. Model World: Tales from the Time Line—The Definition of OR and the Origins of Monte Carlo Simulation. Interfaces. 35 (5), 429–435 (2005).
39. Allen M. P., Tildesley D. J. Computer Simulation of Liquids. New York, Oxford University Press (2002).
40. Frenkel D., Smit B. Understanding Molecular Simulation: From Algorithms to Applications. 2nd ed. London, Academic Press (2002).
41. Engel M., Anderson J. A., Glotzer S. C., Isobe M., Bernard E. P., KrauthW. Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods. Phys. Rev. E. 87, 042134 (2013).
42. Omelyan I. P., Mryglod I. M., Folk R. Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems. Phys. Rev. E. 66, 026701 (2002).
43. Omelyan I. P., Mryglod I. M., Folk R. Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations. Computer Phys. Commun. 151 (3), 272–314 (2003).
44. Trokhymchuk A., Alejandre J. Computer simulations of liquid/vapor interface in Lennard–Jones fluids: Some questions and answers. J. Chem. Phys. 111 (18), 8510–8523 (1999).
45. Simeoni G. G., Bryk T., Gorelli F. A., Krisch M., Ruocco G., Santoro M., Scopigno T. The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids. Nature Phys. 6, 503–507 (2010).
46. Bryk T., Haymet A. D. J. Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces. J. Chem. Phys. 117 (22), 10258–10268 (2002).
47. Wilson M. R., Ilnytskyi J. M., Stimson L. M. Computer simulations of a liquid crystalline dendrimer in liquid crystalline solvents. J. Chem. Phys. 119 (6), 3509–3515 (2003).
48. Baumketner A., Bernstein S. L., Wyttenbach T., Bitan G., Teplow D. B., Bowers M. T., Shea J. E. Amyloid β-protein monomer structure: A computational and experimental study. Protein Sci. 15 (3), 420–428 (2006).
49. Smalyukh I., Trokhymchuk A. Planer-Smoluchowski Soft Matter Workshop on Liquid Crystals and Colloidal Dispersions. Condens. Matter Phys. 13 (3), 37101 (2010).
50. http://www.icmp.lviv.ua/pssm2011.
51. http://www.icmp.lviv.ua/statphys2012.
52. http://icmp.lviv.ua/ucsw2017.
References (International): 1. Ingen-Housz J. Bemerkungen ¨uber den Gebrauch des Vergr¨osserungsglases. In: Vermischte Schriften physisch-medicinischen Inhalts. Uibersetzt und herausgegeben von Nicolaus Carl Molitor. Zweyter Band. Wien: Christian Friderich Wappler (1784), S. 121–126 (in German).
2. Brown R. A brief account of microscopical observations made on the particles contained in the pollen of plants. London and Edinburgh Phil. Mag. J. Sci. 4 (21), 161–173 (1828).
3. Mazo R. M. Brownian Motion. Fluctuations, Dynamics, and Applications. Oxford, Clarendon Press (2002).
4. PohlW. G. The theory of Brownian motion - one hundred years old. In: The Global and the Local: The History of Science and the Cultural Integration of Europe, Proceedings of the 2nd International Conference of the European Society for the History of Science (Cracow, 2006), edited by M. Kokowski. The Press of the Polish Academy of Arts and Sciences, Cracow (2007), p. 419–424.
5. https://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html.
6. Perrin J. La loi de Stokes et le mouvement brownien. C. R. Acad. Sci. Paris. 147, 475-476 (1908); idem, L’origine de mouvement brownien. C. R. Acad. Sci. Paris. 147, 530–533 (1908), (in French).
7. Einstein A. Uber die von der molekularkinetischen Theorie der W¨arme geforderte Bewegung von in ruhen- ¨ den Fl¨ussigkeiten suspendierten Teilchen. Ann. Phys. 322 (8), 549–560 (1905), (in German).
8. von Smoluchowski M. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Phys. 326 (14), 756–780 (1906).
9. Badino M. Probability and Statistic in Boltzmann’s Early Papers on Kinetic Theory. Dublin Core, Chicago (2006).
10. Metropolis N., Rosenbluth A. V., Rosenbluth M. N., Teller A. H., Teller E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 21 (6), 1087–1092 (1953).
11. von Smoluchowski M. Akustische Untersuchungen ¨uber die Elasticit¨at weicher K¨orper. Sitzungsber. kaiserl. Akad. Wiss. Wien. Math.-naturwiss. Kl. 103 (II.a), 739–72 (1894), (in German).
12. Montroll E.W. On the Vienna School of statistical thought. AIP Conference Proceedings. 109 (1), 1–10 (1984).
13. Rovenchak A. Lviv period for Smoluchowski: Science, teaching, and beyond. Condens. Matter Phys. 15 (4), 40002 (2012).
14. Mehra J., Rechenberg H. The Historical Development of Quantum Theory. Vol. 5. Springer (2001).
15. Coen D. R. Vienna in the Age of Uncertainty: Science, Liberalism, and Private Life. University of Chicago Press (2007).
16. Teske A. Marian Smoluchowski: ˙zycie i tw´orczo´s´c. PWN, Krak´ow, 1955 (in Polish); German translation: Teske A., Marian Smoluchowski: Leben und Werk, Wroc law–Warszawa–Krak´ow–Gda´nsk, 1977.
17. G´ora P. E. Fluktuacje wok´o l nas. Dziedzictwo Mariana Smoluchowskiego. PAUza Akademicka. Tygodnik Polskiej Akademii Umieje˛tno´sci. 9 (380–381), 4–5 (2017).
18. Ulam S. Marian Smoluchowski and the theory of probabilities in physics. Am. J. Phys. 25 (7), 475–481 (1957).
19. SzymanskiW.W., Posch H. A. Marian Wilhelm Theofil von Smoluchowski. http://www.iara.org/ AerosolPioneers.htm
20. http://ktf.lnu.edu.ua/cgi-bin/KTF/select.cgi?Smoluchowski
21. Hoborski A. Prof. dr Jan Stock wspomnienie po´smiertne. Przegla˛d G´orniczo-Hutniczy. 27, 454–457 (1925), (in Polish).
22. Rovenchak A. Department for Experimental Physics, University of Lviv, in 1872–1939: Contributions to biobibliography. J. Phys. Stud. 22 (4), 4002 (2018).
23. Smoluchowski M. Zarys teoryi kinetycznej ruch´ow Browna i roztwor´ow me˛tnych. Rozpr. Wydz. matem, przyrodn. Ak. Umieje˛t. Ser. III 6A, 257–281 (1906), (in Polish).
24. Smoluchowski M. Essai d’une th´eorie cin´etique du muovement Brownien et des milieux troubles. Bull. Int. Acad. Sci. Cracovie. Cl. sci. math. nat. 577–602 (1906), (in French).
25. Bodaszewsky L. J. Rauch und Dampf unter dem Mikroskop. Dinglers Polytechn. J. 239, 324–325 (1881), (in German).
26. Kozhushko B. V., Shenderovskyj V. A. Zabute v nauci im’ja (Lukash Bodashevskyj - fizyk i hidromekhanik). Visnyk Nacionalnoho Tekhnichnoho Universytetu "KhPI". 64, 71–76 (2011), (in Ukrainian).
27. Wr´oblewski A. K. Polish physicists and the progress in physics (1870–1920). Techn. Trans. Fund. Sci. 111 (1), 255–273 (2014).
28. Mehra J. Golden Age Of Theoretical Physics. Vol. 1. World Scientific (2001).
29. Smoluchowski M. Versuch einer mathematischen Theorie der Koagulationskinetic kolloider L¨osungen. Z. Phys. Chem. 92U (1), 129–168 (1917), (in German).
30. Smoluchowski M. Grundriß der Koagulationskinetik kolloider L¨osungen. Kolloid-Zeitschrift. 21, 98–104 (1917), (in German).
31. Mycielski J. Stanis law Marcin Ulam (1909–1984). Rocz. Pol. Tow. Matem. Ser. II: Wiad. Matem. 29, 21–37 (1990), (in Polish).
32. Program Politechniki Lwowskiej na rok akademicki 1933/34. Lw´ow, 1933 (in Polish).
33. Ponedilok G. V., Rovenchak A. A. To the history of theoretical physics studies at the Lviv Polytechnic. J. Phys. Stud. 21, 1003 (2017).
34. Bazylevych L., Guran I., Zarichnyi M. Lw´ow period of S. Ulam’s mathematical creativity. Techn. Trans. Fund. Sci. 2-NP, 33–39 (2015).
35. Ulam S. Adventures of a Mathematician. University of California Press (1976).
36. Eckhardt R. Stan Ulam, John von Neumann, and the Monte Carlo Method. In: From Cardinals to Chaos: Reflections on the life and legacy of Stanislaw Ulam. Cambridge, Cambridge University Press (1989). First published in Los Alamos Science Special Issue, 131–141 (1987); https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-88-9068.
37. Giesler G. C. MCNP software quality: Then and now. Los Alamos National Laboratory Report LA-UR-00-2532 (2000); https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/ LA-UR-00-2532.
38. Gass S. I., Assad A. A. Model World: Tales from the Time Line-The Definition of OR and the Origins of Monte Carlo Simulation. Interfaces. 35 (5), 429–435 (2005).
39. Allen M. P., Tildesley D. J. Computer Simulation of Liquids. New York, Oxford University Press (2002).
40. Frenkel D., Smit B. Understanding Molecular Simulation: From Algorithms to Applications. 2nd ed. London, Academic Press (2002).
41. Engel M., Anderson J. A., Glotzer S. C., Isobe M., Bernard E. P., KrauthW. Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods. Phys. Rev. E. 87, 042134 (2013).
42. Omelyan I. P., Mryglod I. M., Folk R. Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems. Phys. Rev. E. 66, 026701 (2002).
43. Omelyan I. P., Mryglod I. M., Folk R. Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations. Computer Phys. Commun. 151 (3), 272–314 (2003).
44. Trokhymchuk A., Alejandre J. Computer simulations of liquid/vapor interface in Lennard–Jones fluids: Some questions and answers. J. Chem. Phys. 111 (18), 8510–8523 (1999).
45. Simeoni G. G., Bryk T., Gorelli F. A., Krisch M., Ruocco G., Santoro M., Scopigno T. The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids. Nature Phys. 6, 503–507 (2010).
46. Bryk T., Haymet A. D. J. Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces. J. Chem. Phys. 117 (22), 10258–10268 (2002).
47. Wilson M. R., Ilnytskyi J. M., Stimson L. M. Computer simulations of a liquid crystalline dendrimer in liquid crystalline solvents. J. Chem. Phys. 119 (6), 3509–3515 (2003).
48. Baumketner A., Bernstein S. L., Wyttenbach T., Bitan G., Teplow D. B., Bowers M. T., Shea J. E. Amyloid b-protein monomer structure: A computational and experimental study. Protein Sci. 15 (3), 420–428 (2006).
49. Smalyukh I., Trokhymchuk A. Planer-Smoluchowski Soft Matter Workshop on Liquid Crystals and Colloidal Dispersions. Condens. Matter Phys. 13 (3), 37101 (2010).
50. http://www.icmp.lviv.ua/pssm2011.
51. http://www.icmp.lviv.ua/statphys2012.
52. http://icmp.lviv.ua/ucsw2017.
Content type: Article
Appears in Collections:Mathematical Modeling And Computing. – 2018. – Vol. 5, No. 2

Files in This Item:
File Description SizeFormat 
2018v5n2_Rovenchak_A-From_Brownian_motion_099-107.pdf1.06 MBAdobe PDFView/Open
2018v5n2_Rovenchak_A-From_Brownian_motion_099-107__COVER.png385.51 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.