Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/45904
Title: Comparison of the measured values of total electron content (TEC) with the corresponding TEC values, obtained according to global ionopheric maps (GIM) data
Other Titles: Порівняння виміряних величин загального вмісту електронів (ТЕС) з відповідними значеннями ТЕС, отриманими за даними глобальних іоносферних карт (GIM)
Authors: Гіряк, І. В.
Савчук, С. Г.
Hiriak, V.
Savchuk, S.
Affiliation: Національний університет “Львівська політехніка”
Lviv Polytechnic National University
Bibliographic description (Ukraine): Hiriak V. Comparison of the measured values of total electron content (TEC) with the corresponding TEC values, obtained according to global ionopheric maps (GIM) data / V. Hiriak, S. Savchuk // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 89. — P. 5–11.
Bibliographic description (International): Hiriak V. Comparison of the measured values of total electron content (TEC) with the corresponding TEC values, obtained according to global ionopheric maps (GIM) data / V. Hiriak, S. Savchuk // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 89. — P. 5–11.
Is part of: Геодезія, картографія і аерофотознімання (89), 2019
Geodesy, cartography and aerial photography (89), 2019
Journal/Collection: Геодезія, картографія і аерофотознімання
Volume: 89
Issue Date: 28-Feb-2019
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
UDC: 528.2
629.78
Keywords: загальний вміст електронів (TEC)
глобальні іоносферні карти (GIM)
іоносфера Землі
GNSS-вимірювання
total electron content (TEC)
global ionospheric maps (GIM)
the Earth’s ionosphere
GNSS-measurement
Number of pages: 7
Page range: 5-11
Start page: 5
End page: 11
URI: https://ena.lpnu.ua/handle/ntb/45904
URL for reference material: ftp://cddis.gsfc.nasa.gov/gps/products/ionex/
http://www.ionolab.org/
https://cyberleninka.ru/article/n/opredeleniepolnogo-
http://commons.wikimedia.org/wiki/File:Solar_cycle_24_sunspot_number_progression_and_prediction.gif
http://openarchive.nure.ua/handle/document/4308
References (Ukraine): Afrajmovich, E. L., Astafeva, E. I., & Zhivet'ev, I. V.
(2006). Solar Activity and Global Electron content.
In Doklady earth sciences (Vol. 409, No. 2, pp. 921–924). MAIK Nauka/Interperiodica. (in Russian).
Alizadeh, M. M., Schuh, H., Todorova, S., & Schmidt, M.
(2011). Global Ionosphere Maps of VTEC from GNSS,
satellite altimetry, and Formosat-3/COSMIC data.
Journal of Geodesy. 85(12), 975–987.
Alizadeh, M. M., Schuh, H., & Schmidt, M. (2015). Ray
tracing technique for global 3-D modeling of
ionospheric electron density using GNSS
measurements. Radio Science, 50(6), 539–553.
Ionospheric maps. Retrieved from ftp://cddis.gsfc.nasa.gov/gps/products/ionex/
Ionospheric Research Laboratory: IONOLAB. Retrieved
from: http://www.ionolab.org/
Feltens, J., Angling, M., Jakowski, N., Mernandez-
Pajares, M., & Zandbergen, R. (2010, January).
GNSS contribution to next generation global
ionospheric monitoring. In Beacon Satellite
Symposium.
Feltens, J., Angling, M., Jakowski, N., Mayer, C., Hoque,
M, Hernández-Pajares, H., … & Aragón-Angel, A. (2009). Analysis of the state of the art ionosphere
modelling and observation techniques. (No. 1/0).
Technical Report OPS-SYS-TN-0017-OPS-GN.
Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A.,
García-Rigo, A., & Orús-Pérez, R. (2017). Methodology
and consistency of slant and vertical assessments for
ionospheric electron content models. Journal of
Geodesy, 91(12), 1405–1414.
Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A.,
Garcia-Rigo, A., & Orús Pérez, R. (2016). Comparing
performances of seven different global VTEC
ionospheric models in the IGS context. In International
GNSS Service Workshop (IGS 2016): Sydney,
Australia: february 8–12, 2016 (pp. 1–13).
International GNSS Service (IGS).
Krankowski, A., Wielgosz, P., Hernández-Pajares, M., &
García-Rigo, A. (2010). Present and future IGS
Ionospheric products. In EGU General Assembly
Conference Abstracts (Vol. 12, p. 6721).
Maslennikova, Y., & Bochkarev, V. (2014). Principal
component analysis of global maps of the total
electronic content. Geomagnetism and Aeronomy, 54(2), 216–223.
Roma-Dollase, D., Hernández-Pajares, M., Krankowski, A.,
Kotulak, K., Ghoddousi-Fard, R., Yuan, Y., ... &
Feltens, J. (2018). Consistency of seven different
GNSS global ionospheric mapping techniques during
one solar cycle. Journal of Geodesy, 92(6), 691–706.
Schaer, S., Gurtner, W., & Feltens, J. (1998, February).
IONEX: The ionosphere map exchange format
version 1. In Proceedings of the IGS AC workshop,
Darmstadt, Germany (Vol. 9, No. 11).
Tereshhenko, E., Milichenko, A., Shvec, M.,
Chernjakov, S. M., Korableva, I. (2015). Total
electron content estimstion using satellites signals of
the Global Navigation System Glonass. Bulletin of
the Kol'sk Scientific Center of the Russian Academy
of Sciences, 1(20), 655–665. (in Russian). Retrieved
from https://cyberleninka.ru/article/n/opredeleniepolnogo-
elektronnogo-soderzhaniya-po-signalamsputnikov-
globalnoy-navigatsionnoy-sistemyglonass
The amount of sunspots of the progression. Retrieved from:
http://commons.wikimedia.org/wiki/File:Solar_cycle_24_sunspot_number_progression_and_prediction.gif
Todorova, S., Hobiger, T., & Schuh H. (2008). Advances in
Space Research, 42(4), 727–736.
Wienia, R. J. (2008). Use of Global Ionospheric Maps for
Precise Point Positioning. Developing an optimised
procedure in using Global Ionospheric Maps for
single-frequency standalone positioning with GPS.
Yankiv-Vitkovska, L. (2012). Using dual-frequency GNSS
observations to determine ionosphere parameters.
Geodesy Cartography and Aerial Photography, 76, 19–28.
Zhang Q., Zhao Q., (2018). Global Ionosphere Mapping and
Differential Code Bias Estimation during Low and High
Solar Activity Periods with GIMAS Software. Remote
Sensing 10(5):705.
Zhelanov, O., & Bezsonov, Ye. (2011). Use of global ionospheric
maps in high-precision positioning tasks. Applied
electronics, 10(3), 302-306. (in Russian). Retrieved from
http://openarchive.nure.ua/handle/document/4308
References (International): Afrajmovich, E. L., Astafeva, E. I., & Zhivet'ev, I. V.
(2006). Solar Activity and Global Electron content.
In Doklady earth sciences (Vol. 409, No. 2, pp. 921–924). MAIK Nauka/Interperiodica. (in Russian).
Alizadeh, M. M., Schuh, H., Todorova, S., & Schmidt, M.
(2011). Global Ionosphere Maps of VTEC from GNSS,
satellite altimetry, and Formosat-3/COSMIC data.
Journal of Geodesy. 85(12), 975–987.
Alizadeh, M. M., Schuh, H., & Schmidt, M. (2015). Ray
tracing technique for global 3-D modeling of
ionospheric electron density using GNSS
measurements. Radio Science, 50(6), 539–553.
Ionospheric maps. Retrieved from ftp://cddis.gsfc.nasa.gov/gps/products/ionex/
Ionospheric Research Laboratory: IONOLAB. Retrieved
from: http://www.ionolab.org/
Feltens, J., Angling, M., Jakowski, N., Mernandez-
Pajares, M., & Zandbergen, R. (2010, January).
GNSS contribution to next generation global
ionospheric monitoring. In Beacon Satellite
Symposium.
Feltens, J., Angling, M., Jakowski, N., Mayer, C., Hoque,
M, Hernández-Pajares, H., … & Aragón-Angel, A. (2009). Analysis of the state of the art ionosphere
modelling and observation techniques. (No. 1/0).
Technical Report OPS-SYS-TN-0017-OPS-GN.
Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A.,
García-Rigo, A., & Orús-Pérez, R. (2017). Methodology
and consistency of slant and vertical assessments for
ionospheric electron content models. Journal of
Geodesy, 91(12), 1405–1414.
Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A.,
Garcia-Rigo, A., & Orús Pérez, R. (2016). Comparing
performances of seven different global VTEC
ionospheric models in the IGS context. In International
GNSS Service Workshop (IGS 2016): Sydney,
Australia: february 8–12, 2016 (pp. 1–13).
International GNSS Service (IGS).
Krankowski, A., Wielgosz, P., Hernández-Pajares, M., &
García-Rigo, A. (2010). Present and future IGS
Ionospheric products. In EGU General Assembly
Conference Abstracts (Vol. 12, p. 6721).
Maslennikova, Y., & Bochkarev, V. (2014). Principal
component analysis of global maps of the total
electronic content. Geomagnetism and Aeronomy, 54(2), 216–223.
Roma-Dollase, D., Hernández-Pajares, M., Krankowski, A.,
Kotulak, K., Ghoddousi-Fard, R., Yuan, Y., ... &
Feltens, J. (2018). Consistency of seven different
GNSS global ionospheric mapping techniques during
one solar cycle. Journal of Geodesy, 92(6), 691–706.
Schaer, S., Gurtner, W., & Feltens, J. (1998, February).
IONEX: The ionosphere map exchange format
version 1. In Proceedings of the IGS AC workshop,
Darmstadt, Germany (Vol. 9, No. 11).
Tereshhenko, E., Milichenko, A., Shvec, M.,
Chernjakov, S. M., Korableva, I. (2015). Total
electron content estimstion using satellites signals of
the Global Navigation System Glonass. Bulletin of
the Kol'sk Scientific Center of the Russian Academy
of Sciences, 1(20), 655–665. (in Russian). Retrieved
from https://cyberleninka.ru/article/n/opredeleniepolnogo-
elektronnogo-soderzhaniya-po-signalamsputnikov-
globalnoy-navigatsionnoy-sistemyglonass
The amount of sunspots of the progression. Retrieved from:
http://commons.wikimedia.org/wiki/File:Solar_cycle_24_sunspot_number_progression_and_prediction.gif
Todorova, S., Hobiger, T., & Schuh H. (2008). Advances in
Space Research, 42(4), 727–736.
Wienia, R. J. (2008). Use of Global Ionospheric Maps for
Precise Point Positioning. Developing an optimised
procedure in using Global Ionospheric Maps for
single-frequency standalone positioning with GPS.
Yankiv-Vitkovska, L. (2012). Using dual-frequency GNSS
observations to determine ionosphere parameters.
Geodesy Cartography and Aerial Photography, 76, 19–28.
Zhang Q., Zhao Q., (2018). Global Ionosphere Mapping and
Differential Code Bias Estimation during Low and High
Solar Activity Periods with GIMAS Software. Remote
Sensing 10(5):705.
Zhelanov, O., & Bezsonov, Ye. (2011). Use of global ionospheric
maps in high-precision positioning tasks. Applied
electronics, 10(3), 302-306. (in Russian). Retrieved from
http://openarchive.nure.ua/handle/document/4308
Content type: Article
Appears in Collections:Геодезія, картографія і аерофотознімання. – 2019. – Випуск 89

Files in This Item:
File Description SizeFormat 
2019v89_Hiriak_V-Comparison_of_the_measured_5-11.pdf533.28 kBAdobe PDFView/Open
2019v89_Hiriak_V-Comparison_of_the_measured_5-11__COVER.png470.73 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.