Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/45904
Full metadata record
DC FieldValueLanguage
dc.contributor.authorГіряк, І. В.
dc.contributor.authorСавчук, С. Г.
dc.contributor.authorHiriak, V.
dc.contributor.authorSavchuk, S.
dc.date.accessioned2020-02-21T08:54:20Z-
dc.date.available2020-02-21T08:54:20Z-
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.identifier.citationHiriak V. Comparison of the measured values of total electron content (TEC) with the corresponding TEC values, obtained according to global ionopheric maps (GIM) data / V. Hiriak, S. Savchuk // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 89. — P. 5–11.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45904-
dc.format.extent5-11
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання (89), 2019
dc.relation.ispartofGeodesy, cartography and aerial photography (89), 2019
dc.relation.uriftp://cddis.gsfc.nasa.gov/gps/products/ionex/
dc.relation.urihttp://www.ionolab.org/
dc.relation.urihttps://cyberleninka.ru/article/n/opredeleniepolnogo-
dc.relation.urihttp://commons.wikimedia.org/wiki/File:Solar_cycle_24_sunspot_number_progression_and_prediction.gif
dc.relation.urihttp://openarchive.nure.ua/handle/document/4308
dc.subjectзагальний вміст електронів (TEC)
dc.subjectглобальні іоносферні карти (GIM)
dc.subjectіоносфера Землі
dc.subjectGNSS-вимірювання
dc.subjecttotal electron content (TEC)
dc.subjectglobal ionospheric maps (GIM)
dc.subjectthe Earth’s ionosphere
dc.subjectGNSS-measurement
dc.titleComparison of the measured values of total electron content (TEC) with the corresponding TEC values, obtained according to global ionopheric maps (GIM) data
dc.title.alternativeПорівняння виміряних величин загального вмісту електронів (ТЕС) з відповідними значеннями ТЕС, отриманими за даними глобальних іоносферних карт (GIM)
dc.typeArticle
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages7
dc.identifier.citationenHiriak V. Comparison of the measured values of total electron content (TEC) with the corresponding TEC values, obtained according to global ionopheric maps (GIM) data / V. Hiriak, S. Savchuk // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 89. — P. 5–11.
dc.relation.referencesAfrajmovich, E. L., Astafeva, E. I., & Zhivet'ev, I. V.
dc.relation.references(2006). Solar Activity and Global Electron content.
dc.relation.referencesIn Doklady earth sciences (Vol. 409, No. 2, pp. 921–924). MAIK Nauka/Interperiodica. (in Russian).
dc.relation.referencesAlizadeh, M. M., Schuh, H., Todorova, S., & Schmidt, M.
dc.relation.references(2011). Global Ionosphere Maps of VTEC from GNSS,
dc.relation.referencessatellite altimetry, and Formosat-3/COSMIC data.
dc.relation.referencesJournal of Geodesy. 85(12), 975–987.
dc.relation.referencesAlizadeh, M. M., Schuh, H., & Schmidt, M. (2015). Ray
dc.relation.referencestracing technique for global 3-D modeling of
dc.relation.referencesionospheric electron density using GNSS
dc.relation.referencesmeasurements. Radio Science, 50(6), 539–553.
dc.relation.referencesIonospheric maps. Retrieved from ftp://cddis.gsfc.nasa.gov/gps/products/ionex/
dc.relation.referencesIonospheric Research Laboratory: IONOLAB. Retrieved
dc.relation.referencesfrom: http://www.ionolab.org/
dc.relation.referencesFeltens, J., Angling, M., Jakowski, N., Mernandez-
dc.relation.referencesPajares, M., & Zandbergen, R. (2010, January).
dc.relation.referencesGNSS contribution to next generation global
dc.relation.referencesionospheric monitoring. In Beacon Satellite
dc.relation.referencesSymposium.
dc.relation.referencesFeltens, J., Angling, M., Jakowski, N., Mayer, C., Hoque,
dc.relation.referencesM, Hernández-Pajares, H., … & Aragón-Angel, A. (2009). Analysis of the state of the art ionosphere
dc.relation.referencesmodelling and observation techniques. (No. 1/0).
dc.relation.referencesTechnical Report OPS-SYS-TN-0017-OPS-GN.
dc.relation.referencesHernández-Pajares, M., Roma-Dollase, D., Krankowski, A.,
dc.relation.referencesGarcía-Rigo, A., & Orús-Pérez, R. (2017). Methodology
dc.relation.referencesand consistency of slant and vertical assessments for
dc.relation.referencesionospheric electron content models. Journal of
dc.relation.referencesGeodesy, 91(12), 1405–1414.
dc.relation.referencesHernández-Pajares, M., Roma-Dollase, D., Krankowski, A.,
dc.relation.referencesGarcia-Rigo, A., & Orús Pérez, R. (2016). Comparing
dc.relation.referencesperformances of seven different global VTEC
dc.relation.referencesionospheric models in the IGS context. In International
dc.relation.referencesGNSS Service Workshop (IGS 2016): Sydney,
dc.relation.referencesAustralia: february 8–12, 2016 (pp. 1–13).
dc.relation.referencesInternational GNSS Service (IGS).
dc.relation.referencesKrankowski, A., Wielgosz, P., Hernández-Pajares, M., &
dc.relation.referencesGarcía-Rigo, A. (2010). Present and future IGS
dc.relation.referencesIonospheric products. In EGU General Assembly
dc.relation.referencesConference Abstracts (Vol. 12, p. 6721).
dc.relation.referencesMaslennikova, Y., & Bochkarev, V. (2014). Principal
dc.relation.referencescomponent analysis of global maps of the total
dc.relation.referenceselectronic content. Geomagnetism and Aeronomy, 54(2), 216–223.
dc.relation.referencesRoma-Dollase, D., Hernández-Pajares, M., Krankowski, A.,
dc.relation.referencesKotulak, K., Ghoddousi-Fard, R., Yuan, Y., ... &
dc.relation.referencesFeltens, J. (2018). Consistency of seven different
dc.relation.referencesGNSS global ionospheric mapping techniques during
dc.relation.referencesone solar cycle. Journal of Geodesy, 92(6), 691–706.
dc.relation.referencesSchaer, S., Gurtner, W., & Feltens, J. (1998, February).
dc.relation.referencesIONEX: The ionosphere map exchange format
dc.relation.referencesversion 1. In Proceedings of the IGS AC workshop,
dc.relation.referencesDarmstadt, Germany (Vol. 9, No. 11).
dc.relation.referencesTereshhenko, E., Milichenko, A., Shvec, M.,
dc.relation.referencesChernjakov, S. M., Korableva, I. (2015). Total
dc.relation.referenceselectron content estimstion using satellites signals of
dc.relation.referencesthe Global Navigation System Glonass. Bulletin of
dc.relation.referencesthe Kol'sk Scientific Center of the Russian Academy
dc.relation.referencesof Sciences, 1(20), 655–665. (in Russian). Retrieved
dc.relation.referencesfrom https://cyberleninka.ru/article/n/opredeleniepolnogo-
dc.relation.referenceselektronnogo-soderzhaniya-po-signalamsputnikov-
dc.relation.referencesglobalnoy-navigatsionnoy-sistemyglonass
dc.relation.referencesThe amount of sunspots of the progression. Retrieved from:
dc.relation.referenceshttp://commons.wikimedia.org/wiki/File:Solar_cycle_24_sunspot_number_progression_and_prediction.gif
dc.relation.referencesTodorova, S., Hobiger, T., & Schuh H. (2008). Advances in
dc.relation.referencesSpace Research, 42(4), 727–736.
dc.relation.referencesWienia, R. J. (2008). Use of Global Ionospheric Maps for
dc.relation.referencesPrecise Point Positioning. Developing an optimised
dc.relation.referencesprocedure in using Global Ionospheric Maps for
dc.relation.referencessingle-frequency standalone positioning with GPS.
dc.relation.referencesYankiv-Vitkovska, L. (2012). Using dual-frequency GNSS
dc.relation.referencesobservations to determine ionosphere parameters.
dc.relation.referencesGeodesy Cartography and Aerial Photography, 76, 19–28.
dc.relation.referencesZhang Q., Zhao Q., (2018). Global Ionosphere Mapping and
dc.relation.referencesDifferential Code Bias Estimation during Low and High
dc.relation.referencesSolar Activity Periods with GIMAS Software. Remote
dc.relation.referencesSensing 10(5):705.
dc.relation.referencesZhelanov, O., & Bezsonov, Ye. (2011). Use of global ionospheric
dc.relation.referencesmaps in high-precision positioning tasks. Applied
dc.relation.referenceselectronics, 10(3), 302-306. (in Russian). Retrieved from
dc.relation.referenceshttp://openarchive.nure.ua/handle/document/4308
dc.relation.referencesenAfrajmovich, E. L., Astafeva, E. I., & Zhivet'ev, I. V.
dc.relation.referencesen(2006). Solar Activity and Global Electron content.
dc.relation.referencesenIn Doklady earth sciences (Vol. 409, No. 2, pp. 921–924). MAIK Nauka/Interperiodica. (in Russian).
dc.relation.referencesenAlizadeh, M. M., Schuh, H., Todorova, S., & Schmidt, M.
dc.relation.referencesen(2011). Global Ionosphere Maps of VTEC from GNSS,
dc.relation.referencesensatellite altimetry, and Formosat-3/COSMIC data.
dc.relation.referencesenJournal of Geodesy. 85(12), 975–987.
dc.relation.referencesenAlizadeh, M. M., Schuh, H., & Schmidt, M. (2015). Ray
dc.relation.referencesentracing technique for global 3-D modeling of
dc.relation.referencesenionospheric electron density using GNSS
dc.relation.referencesenmeasurements. Radio Science, 50(6), 539–553.
dc.relation.referencesenIonospheric maps. Retrieved from ftp://cddis.gsfc.nasa.gov/gps/products/ionex/
dc.relation.referencesenIonospheric Research Laboratory: IONOLAB. Retrieved
dc.relation.referencesenfrom: http://www.ionolab.org/
dc.relation.referencesenFeltens, J., Angling, M., Jakowski, N., Mernandez-
dc.relation.referencesenPajares, M., & Zandbergen, R. (2010, January).
dc.relation.referencesenGNSS contribution to next generation global
dc.relation.referencesenionospheric monitoring. In Beacon Satellite
dc.relation.referencesenSymposium.
dc.relation.referencesenFeltens, J., Angling, M., Jakowski, N., Mayer, C., Hoque,
dc.relation.referencesenM, Hernández-Pajares, H., … & Aragón-Angel, A. (2009). Analysis of the state of the art ionosphere
dc.relation.referencesenmodelling and observation techniques. (No. 1/0).
dc.relation.referencesenTechnical Report OPS-SYS-TN-0017-OPS-GN.
dc.relation.referencesenHernández-Pajares, M., Roma-Dollase, D., Krankowski, A.,
dc.relation.referencesenGarcía-Rigo, A., & Orús-Pérez, R. (2017). Methodology
dc.relation.referencesenand consistency of slant and vertical assessments for
dc.relation.referencesenionospheric electron content models. Journal of
dc.relation.referencesenGeodesy, 91(12), 1405–1414.
dc.relation.referencesenHernández-Pajares, M., Roma-Dollase, D., Krankowski, A.,
dc.relation.referencesenGarcia-Rigo, A., & Orús Pérez, R. (2016). Comparing
dc.relation.referencesenperformances of seven different global VTEC
dc.relation.referencesenionospheric models in the IGS context. In International
dc.relation.referencesenGNSS Service Workshop (IGS 2016): Sydney,
dc.relation.referencesenAustralia: february 8–12, 2016 (pp. 1–13).
dc.relation.referencesenInternational GNSS Service (IGS).
dc.relation.referencesenKrankowski, A., Wielgosz, P., Hernández-Pajares, M., &
dc.relation.referencesenGarcía-Rigo, A. (2010). Present and future IGS
dc.relation.referencesenIonospheric products. In EGU General Assembly
dc.relation.referencesenConference Abstracts (Vol. 12, p. 6721).
dc.relation.referencesenMaslennikova, Y., & Bochkarev, V. (2014). Principal
dc.relation.referencesencomponent analysis of global maps of the total
dc.relation.referencesenelectronic content. Geomagnetism and Aeronomy, 54(2), 216–223.
dc.relation.referencesenRoma-Dollase, D., Hernández-Pajares, M., Krankowski, A.,
dc.relation.referencesenKotulak, K., Ghoddousi-Fard, R., Yuan, Y., ... &
dc.relation.referencesenFeltens, J. (2018). Consistency of seven different
dc.relation.referencesenGNSS global ionospheric mapping techniques during
dc.relation.referencesenone solar cycle. Journal of Geodesy, 92(6), 691–706.
dc.relation.referencesenSchaer, S., Gurtner, W., & Feltens, J. (1998, February).
dc.relation.referencesenIONEX: The ionosphere map exchange format
dc.relation.referencesenversion 1. In Proceedings of the IGS AC workshop,
dc.relation.referencesenDarmstadt, Germany (Vol. 9, No. 11).
dc.relation.referencesenTereshhenko, E., Milichenko, A., Shvec, M.,
dc.relation.referencesenChernjakov, S. M., Korableva, I. (2015). Total
dc.relation.referencesenelectron content estimstion using satellites signals of
dc.relation.referencesenthe Global Navigation System Glonass. Bulletin of
dc.relation.referencesenthe Kol'sk Scientific Center of the Russian Academy
dc.relation.referencesenof Sciences, 1(20), 655–665. (in Russian). Retrieved
dc.relation.referencesenfrom https://cyberleninka.ru/article/n/opredeleniepolnogo-
dc.relation.referencesenelektronnogo-soderzhaniya-po-signalamsputnikov-
dc.relation.referencesenglobalnoy-navigatsionnoy-sistemyglonass
dc.relation.referencesenThe amount of sunspots of the progression. Retrieved from:
dc.relation.referencesenhttp://commons.wikimedia.org/wiki/File:Solar_cycle_24_sunspot_number_progression_and_prediction.gif
dc.relation.referencesenTodorova, S., Hobiger, T., & Schuh H. (2008). Advances in
dc.relation.referencesenSpace Research, 42(4), 727–736.
dc.relation.referencesenWienia, R. J. (2008). Use of Global Ionospheric Maps for
dc.relation.referencesenPrecise Point Positioning. Developing an optimised
dc.relation.referencesenprocedure in using Global Ionospheric Maps for
dc.relation.referencesensingle-frequency standalone positioning with GPS.
dc.relation.referencesenYankiv-Vitkovska, L. (2012). Using dual-frequency GNSS
dc.relation.referencesenobservations to determine ionosphere parameters.
dc.relation.referencesenGeodesy Cartography and Aerial Photography, 76, 19–28.
dc.relation.referencesenZhang Q., Zhao Q., (2018). Global Ionosphere Mapping and
dc.relation.referencesenDifferential Code Bias Estimation during Low and High
dc.relation.referencesenSolar Activity Periods with GIMAS Software. Remote
dc.relation.referencesenSensing 10(5):705.
dc.relation.referencesenZhelanov, O., & Bezsonov, Ye. (2011). Use of global ionospheric
dc.relation.referencesenmaps in high-precision positioning tasks. Applied
dc.relation.referencesenelectronics, 10(3), 302-306. (in Russian). Retrieved from
dc.relation.referencesenhttp://openarchive.nure.ua/handle/document/4308
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.volume89
dc.citation.spage5
dc.citation.epage11
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.subject.udc528.2
dc.subject.udc629.78
Appears in Collections:Геодезія, картографія і аерофотознімання. – 2019. – Випуск 89

Files in This Item:
File Description SizeFormat 
2019v89_Hiriak_V-Comparison_of_the_measured_5-11.pdf533.28 kBAdobe PDFView/Open
2019v89_Hiriak_V-Comparison_of_the_measured_5-11__COVER.png470.73 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.