Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/45870
Full metadata record
DC FieldValueLanguage
dc.contributor.authorДвуліт, П. Д.-
dc.contributor.authorДжунь, Й. В.-
dc.contributor.authorDvulit, P.-
dc.contributor.authorDzhun, J.-
dc.date.accessioned2020-02-19T13:04:09Z-
dc.date.available2020-02-19T13:04:09Z-
dc.date.created2019-06-26-
dc.date.issued2019-06-26-
dc.identifier.citationDvulit P. Diagnostics of the high-precise ballistic measured gravity acceleration by methods of non-classical errors theory / P. Dvulit, J. Dzhun // Geodynamics : scientific journal. — Lviv : Lviv Polytechnic Publishing House, 2019. — No 1 (26). — P. 5–16.-
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45870-
dc.description.abstractМета дослідження: показати необхідність використання сучасних уявлень про закон розподілу похибок спостережень, задіяних в категоріях “Некласичної теорії вимірів” (НТПВ) при проведенні високоточних балістичних визначень гравітаційного прискорення. Ці визначення характеризуються великими обсягами, що, відповідно до теорії професора Кембриджського університету Г. Джеффріса, автоматично виводить їх за межі дії класичних уявлень про закон похибок вимірів. Ці застарілі уявлення про закон розподілу похибок вимірів великого обсягу є головною перешкодою на шляху вдосконалення методики цих дуже важливих визначень. Методика дослідження забезпечується процедурами НТПВ, які розроблені з метою контролю ймовірнісної форми статистичних розподілів високоточних абсолютних балістичних вимірів із великими обсягами вибірок на основі рекомендацій Г. Джеффріса і на принципах теорії перевірки гіпотез. Основним результатом дослідження є проведення НТПВ- діагностики метрологічної ситуації високоточних вимірів балістичним гравіметром FG-5, виконаних після деяких удосконалень програми спостережень. Цей метод діагностики ґрунтується на використанні довірчих інтервалів для оцінок асиметрії і ексцесу отриманої вибірки вимірів g з наступним застосуванням -тесту Пірсона для визначення значимості відхилень їх розподілів від встановлених норм. У відповідності з категоріями НТПВ такими нормами є закони Гауса і Пірсона-Джеффріса, оскільки саме вони забезпечують несингулярність вагової функції вибірки і можливість отримання невироджених оцінок g при математичній обробці вимірів. Наукова новизна: задіяні можливості нового інструмента в області “Data Analysis” – НТПВ з метою вдосконалення методики високоточних вимірів g, які виконуються в складній метрологічній ситуації і необхідністю врахування ряду нестаціонарних джерел систематичних похибок. Практична значущість дослідження полягає в застосуванні НТПВ – діагностики ймовірнісної форми розподілу вимірів g з метою вдосконалення методики цих високоточних визначень. Дослідження причин відхилень розподілів похибок від встановлених норм забезпечує метрологічну грамотність проведення високоточних вимірів великого обсягу.-
dc.description.abstractThe purpose of the investigation is to show the necessity of using modern ideas about the law of error distribution for observations involved in the categories of the “Non-classical error theory of measurements” (NETM) in the process of performing high-precision ballistic definitions of gravitational acceleration. These definitions are characterized by large volumes, which according to the H. Jeffreys’ theory, professor at the University of Cambridge, automatically takes them beyond the bounds of the classical concepts about the errors of measurements law. These outdated views about the distribution law of errors of large volume measurements are the main obstacles to improve the methodology of these highly precise and important definitions. The research methodology is provided by the NETM-procedures that was designed to control the probabilistic from of the statistical distribution of absolute high-precise ballistic measurements g with large sample volumes based on H. Jeffreys’ recommendations and on the principles of hypothesis testing theory. The main result of the research is to carry out NETM-diagnostics of a metrological situation with the ballistic gravimeter FG-5 after some improvements of the program of the observation. This method of diagnostics is based on the use confidence intervals to the estimates of asymmetry and kurtosis of the obtained samples of measurements g with the following application of the Pearson’s -test to determine the significance of the deviations of its distribution from the established norms. In accordance with the categories of the NETM, such norms are the Gauss’s and Person-Jeffreys’s laws, since only they ensure the non-singularity of the weight function of the sample, and therefore the possibility of obtaining non generate estimates g during the mathematical processing of measurements. Scientific novelty: using the possibilities of the new important tool in the field “Data analysis” using the NETM to improve the technique of the high-precise measurements g, which are performed in a complicated metrological situation with the necessity of taking into account a number of non-stationary sources of systematic errors. The practical significance of the research is in use of NETM-diagnostics of the probabilistic form of the distribution of measurements g in order to improve the methodology of these highly precise determinations. The investigation seeks reasons for the deviations of errors distributions from established norms providing metrological literacy of the high-precise large-scale measurements.-
dc.format.extent5-16-
dc.language.isoen-
dc.publisherLviv Polytechnic Publishing House-
dc.relation.ispartofГеодинаміка : науковий журнал, 1 (26), 2019-
dc.relation.ispartofGeodynamics : scientific journal, 1 (26), 2019-
dc.subjectзакони похибок: Гауса-
dc.subjectПірсона–Джеффріса-
dc.subjectабсолютні виміри гравітаційного прискорення-
dc.subjectнекласична теорія похибок вимірів-
dc.subjectlaws of errors Gauss and Pearson-Jeffreys-
dc.subjectabsolute measurements gravity acceleration-
dc.subjectnonclassical errors theory-
dc.titleDiagnostics of the high-precise ballistic measured gravity acceleration by methods of non-classical errors theory-
dc.title.alternativeДіагностика високоточних балістичних вимірів гравітаційного прискорення методами некласичної теорії похибок-
dc.typeArticle-
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2019-
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2019-
dc.rights.holder© Національний університет «Львівська політехніка», 2019-
dc.rights.holder© P. Dvulit, J. Dzhun-
dc.contributor.affiliationНаціональний університет “Львівська політехніка”-
dc.contributor.affiliationМіжнародний економіко-гуманітарний університет ім. акад. С. Дем’янчука, вул. С. Дем’янчука-
dc.contributor.affiliationLviv Polytechnic National University-
dc.contributor.affiliationInternational University of Economics and Humanities named after Academician Stepan Demianchuk-
dc.format.pages12-
dc.identifier.citationenDvulit P. Diagnostics of the high-precise ballistic measured gravity acceleration by methods of non-classical errors theory / P. Dvulit, J. Dzhun // Geodynamics : scientific journal. — Lviv Polytechnic Publishing House, 2019. — No 1 (26). — P. 5–16.-
dc.relation.referencesArnautov, G. P., Koronkevich, V. P., & Stus, Yu. F.,-
dc.relation.references(1982). The Interferometer of the absolute lazers-
dc.relation.referencesballistic gravimeter. Institut avtomatici i-
dc.relation.referenceselektrometrii SO AN USSR, Novosibirsk,-
dc.relation.referencesPreprint 196. 37 p.-
dc.relation.referencesBessel, F. W. (1818). Fundamenta astronomiae. Konigsberg.-
dc.relation.referencesBessel, F. W. (1838). Untersuhungen uber die Wahrscheinlichkeit-
dc.relation.referencesder Beobachtungs-fehle. Astronomische-
dc.relation.referencesNachrichten, b. 15, 369.-
dc.relation.referencesBolshev, L. N., & Smirnov, N. V. (1983). Tables of-
dc.relation.referencesMathematical Statistics. Moscow: Science. (in Russian).-
dc.relation.referencesPearson, K. (1902). On the Mathematical Theory of-
dc.relation.referencesErrors of Judgment with special Reference to the-
dc.relation.referencesPersonal Equation. Philosophical Transactions of-
dc.relation.referencesthe Royal Society of London. Ser. A., 198, 235–296.-
dc.relation.referencesSakuma, A. (1973). A permanent station for the-
dc.relation.referencesabsolute determination of gravity approaching one-
dc.relation.referencesmicrogal accurace. Proc. Symposium on Earth’s-
dc.relation.referencesgravitational field and secular variations in-
dc.relation.referencesposition. University of N. S. W., Sidney. p. 674–684.-
dc.relation.referencesStudent. (1927). Errors of routine analysis. Biometrika, 151–164.-
dc.relation.referencesBorodachev, N. A. (1950). The Main Questions of the-
dc.relation.referencesTukey, J. W. (1960). A survey of sampling from-
dc.relation.referencescontaminated distributions. Contributions to-
dc.relation.referencesprobability and statistics, 448–485.-
dc.relation.referencesTukey, J. W. (1962). The future of data analysis. The-
dc.relation.referencesannals of mathematical statistics, 33(1), 1–67.-
dc.relation.referencesaccuracy of the Theory of Manufacture. Editor-
dc.relation.referencesA. N. Kolmogorov. Moscow – Leningrad: AS USSR Publ., 360 p, [In Russian].-
dc.relation.referencesBruevich, N. G. (Editor). (1973). Production Accuracy-
dc.relation.referencesin the Mechanic and Instrument engineering.-
dc.relation.referencesCramér, H. (1946). Mathematical methods of-
dc.relation.referencesstatistics. 1946. Department of Mathematical SU.-
dc.relation.referencesDoolittle, C. L. (1910). Results of Observations with-
dc.relation.referencesthe zenith telescope and the Wharton reflex zenith-
dc.relation.referencestube. The Astronomical Journal, XXVI, 608, Albany.-
dc.relation.referencesDoolittle, C. L. (1912). Results of observation with-
dc.relation.referencesthe zenith telescope and the Wharton reflex zenith-
dc.relation.referencestube. The Astronomical Journal, 27, 133–138.-
dc.relation.referencesDvulit, P., & Dzhun, I. (2017). Application of-
dc.relation.referencesmethods of the non-classical error theory in-
dc.relation.referencesabsolute measurements of Galilean acceleration. Geodynamics, (22), 7–15.-
dc.relation.referencesDzhun, I. V. (1969). Pearson Distribution of type VII-
dc.relation.referencesin the errors of Observations of Latitude-
dc.relation.referencesVariations. Astrom. Astrofiz. 2, 101115.-
dc.relation.referencesDzhun, I. V. (1974). Analysis of parallel Latitudinal-
dc.relation.referencesObservations performed under the general-
dc.relation.referencesprogram. Extended abstract of Cand. Degree of-
dc.relation.referencesPhis. – Math. Sci.: spec. 01.03.01 “Astrometry-
dc.relation.referencesand Celectial Mechanics”. Kyiv: Institute of mathematics of AS USSR.-
dc.relation.referencesDzhun, I. V. (1983). Fluctuations in Weight of-
dc.relation.referencesIndividual Measurements of the Gravity Acceleration-
dc.relation.referencesand the Way of their Account for-
dc.relation.referencesballistic Observations Processing. In Repeated-
dc.relation.referencesGravity Observations: Theory and Results.-
dc.relation.referencesMoscow: MGK Prezidiume AS USSR, Neftegeofizika Publ., 46–52.-
dc.relation.referencesDzhun, I. V., Arnautov G. P., Stus Yu. F., Shcheglov-
dc.relation.referencesS. N. (1984). Feature of the Dis-tribution Law-
dc.relation.referencesfor the Results of Ballistic Measurement of the-
dc.relation.referencesGravity Acceleration. Repeat Gravimetric-
dc.relation.referencesObservations: Theory and Results. Moscow: MGK-
dc.relation.referencesPrezidiume AS USSR, Neftegeofizika Publ., 87–100.-
dc.relation.referencesDzhun, I. V. (1992). Mathematical Treatment of-
dc.relation.referencesAstronomical and Space-Based Information in-
dc.relation.referencesnon-Gaussian Observation Errors. Extended-
dc.relation.referencesAbstract of Doctoral Dissertation in Physics and-
dc.relation.referencesMathematics. Main Astronomical Observatory of-
dc.relation.referencesthe National Academy of Sciences of Ukraine, Kyiv.-
dc.relation.referencesDzhun, I. V. (2012). Distribution of errors in multiple-
dc.relation.referenceslarge-volume observations. Measurement Techniques, 55, 393–396., Springer.-
dc.relation.referencesDzhun, I. V. (2015). The Non-classical Errors Theory-
dc.relation.referencesof Measurements. Rivne: Estero Publ., 168 [in Russian].-
dc.relation.referencesDzhun, J. V. (2017). A new importnat tool in the field-
dc.relation.referencesof intelligent data analysis. Alcide De Gasperi-
dc.relation.referencesUniversity of Euroregional Economy in Jozefow.-
dc.relation.referencesIntercultural Communication, 1/2, 162–175.-
dc.relation.referencesEddington, A. S. (1933). Notes on the method of least-
dc.relation.referencessquares. Proceedings of the Physical Society, 45(2), 271.-
dc.relation.referencesFedorov, E. P. (1963). Nutation and forced motion of-
dc.relation.referencesthe Earth's pole from the data of latitude-
dc.relation.referencesobservations. Oxford, New York, Pergamon Press.-
dc.relation.referencesGauss, C. F. (1809). Theoria motus corporum coelestium-
dc.relation.referencesin sectionibus conicis solem ambientium (Vol. 7). Perthes et Besser.-
dc.relation.referencesGauss, C. F. (1823). Theoria combinationis observationum-
dc.relation.referenceserroribus minimis obnoxiae (Vol. 1). Henricus Dieterich.-
dc.relation.referencesGeary, R. C. (1947). Testing for Normality. Biometrika, 34, 209–242.-
dc.relation.referencesHammond, J. A., & Faller, J. E. (1971). A laser-interferometer-
dc.relation.referencessystem for the absolute determination of-
dc.relation.referencesthe acceleration due to gravity. Precision Measurement-
dc.relation.referencesand Fundamental Constants; Proceedings, 343, 457.-
dc.relation.referencesHampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., &-
dc.relation.referencesStahel, W. A. (1986). Robust statistics (pp. 29-30). New York:Wiley.-
dc.relation.referencesHulme, H. R., & Symms, L. S. T. (1939). The law of-
dc.relation.referenceserror and the combination of observations. Monthly-
dc.relation.referencesNotices of the Royal Astronomical Society, 99, 642.-
dc.relation.referencesIdelson, N. I. (1947). Method of Least Squares and the-
dc.relation.referencesTheory of Math. Treatment of Observations). [In-
dc.relation.referencesRussian]. Geodezizdat. Moscow – Leningrad.-
dc.relation.referencesJeffreys, H. (1938). The law of error and the-
dc.relation.referencescombination of observations. Philosophical-
dc.relation.referencesTransactions of the Royal Society of London.-
dc.relation.referencesSeries A, Mathematical and Physical Sciences, 237(777), 231–271.-
dc.relation.referencesJeffreys, H. (1939). The law of error in the Greenwich-
dc.relation.referencesvariation of latitude observations. Monthly Notices-
dc.relation.referencesof the Royal Astronomical Society, 99, 703.-
dc.relation.referencesJeffreys, H. (1998). The theory of probability. OUP Oxford.-
dc.relation.referencesLucacs, E. A. (1942). A Characterization of the normal-
dc.relation.referencesDistribution. Annals of Mathematical Statistics. 13, 91–93.-
dc.relation.referencesNewcomb, S. (1886). A generalized theory of the-
dc.relation.referencescombination of observations so as to obtain the-
dc.relation.referencesbest result. American journal of Mathematics, 343–366.-
dc.relation.referencesOgorodnikov, K. F. (1928). Procedure for Reducing-
dc.relation.referencesObservations by introducing Mean Weights in-
dc.relation.referencesapplication to Statistical Study of Stellar Motions,-
dc.relation.referencesAstron., Jurn., 5(1), 1–21.-
dc.relation.referencesenArnautov, G. P., Koronkevich, V. P., & Stus, Yu. F.,-
dc.relation.referencesen(1982). The Interferometer of the absolute lazers-
dc.relation.referencesenballistic gravimeter. Institut avtomatici i-
dc.relation.referencesenelektrometrii SO AN USSR, Novosibirsk,-
dc.relation.referencesenPreprint 196. 37 p.-
dc.relation.referencesenBessel, F. W. (1818). Fundamenta astronomiae. Konigsberg.-
dc.relation.referencesenBessel, F. W. (1838). Untersuhungen uber die Wahrscheinlichkeit-
dc.relation.referencesender Beobachtungs-fehle. Astronomische-
dc.relation.referencesenNachrichten, b. 15, 369.-
dc.relation.referencesenBolshev, L. N., & Smirnov, N. V. (1983). Tables of-
dc.relation.referencesenMathematical Statistics. Moscow: Science. (in Russian).-
dc.relation.referencesenPearson, K. (1902). On the Mathematical Theory of-
dc.relation.referencesenErrors of Judgment with special Reference to the-
dc.relation.referencesenPersonal Equation. Philosophical Transactions of-
dc.relation.referencesenthe Royal Society of London. Ser. A., 198, 235–296.-
dc.relation.referencesenSakuma, A. (1973). A permanent station for the-
dc.relation.referencesenabsolute determination of gravity approaching one-
dc.relation.referencesenmicrogal accurace. Proc. Symposium on Earth’s-
dc.relation.referencesengravitational field and secular variations in-
dc.relation.referencesenposition. University of N. S. W., Sidney. p. 674–684.-
dc.relation.referencesenStudent. (1927). Errors of routine analysis. Biometrika, 151–164.-
dc.relation.referencesenBorodachev, N. A. (1950). The Main Questions of the-
dc.relation.referencesenTukey, J. W. (1960). A survey of sampling from-
dc.relation.referencesencontaminated distributions. Contributions to-
dc.relation.referencesenprobability and statistics, 448–485.-
dc.relation.referencesenTukey, J. W. (1962). The future of data analysis. The-
dc.relation.referencesenannals of mathematical statistics, 33(1), 1–67.-
dc.relation.referencesenaccuracy of the Theory of Manufacture. Editor-
dc.relation.referencesenA. N. Kolmogorov. Moscow – Leningrad: AS USSR Publ., 360 p, [In Russian].-
dc.relation.referencesenBruevich, N. G. (Editor). (1973). Production Accuracy-
dc.relation.referencesenin the Mechanic and Instrument engineering.-
dc.relation.referencesenCramér, H. (1946). Mathematical methods of-
dc.relation.referencesenstatistics. 1946. Department of Mathematical SU.-
dc.relation.referencesenDoolittle, C. L. (1910). Results of Observations with-
dc.relation.referencesenthe zenith telescope and the Wharton reflex zenith-
dc.relation.referencesentube. The Astronomical Journal, XXVI, 608, Albany.-
dc.relation.referencesenDoolittle, C. L. (1912). Results of observation with-
dc.relation.referencesenthe zenith telescope and the Wharton reflex zenith-
dc.relation.referencesentube. The Astronomical Journal, 27, 133–138.-
dc.relation.referencesenDvulit, P., & Dzhun, I. (2017). Application of-
dc.relation.referencesenmethods of the non-classical error theory in-
dc.relation.referencesenabsolute measurements of Galilean acceleration. Geodynamics, (22), 7–15.-
dc.relation.referencesenDzhun, I. V. (1969). Pearson Distribution of type VII-
dc.relation.referencesenin the errors of Observations of Latitude-
dc.relation.referencesenVariations. Astrom. Astrofiz. 2, 101115.-
dc.relation.referencesenDzhun, I. V. (1974). Analysis of parallel Latitudinal-
dc.relation.referencesenObservations performed under the general-
dc.relation.referencesenprogram. Extended abstract of Cand. Degree of-
dc.relation.referencesenPhis, Math. Sci., spec. 01.03.01 "Astrometry-
dc.relation.referencesenand Celectial Mechanics". Kyiv: Institute of mathematics of AS USSR.-
dc.relation.referencesenDzhun, I. V. (1983). Fluctuations in Weight of-
dc.relation.referencesenIndividual Measurements of the Gravity Acceleration-
dc.relation.referencesenand the Way of their Account for-
dc.relation.referencesenballistic Observations Processing. In Repeated-
dc.relation.referencesenGravity Observations: Theory and Results.-
dc.relation.referencesenMoscow: MGK Prezidiume AS USSR, Neftegeofizika Publ., 46–52.-
dc.relation.referencesenDzhun, I. V., Arnautov G. P., Stus Yu. F., Shcheglov-
dc.relation.referencesenS. N. (1984). Feature of the Dis-tribution Law-
dc.relation.referencesenfor the Results of Ballistic Measurement of the-
dc.relation.referencesenGravity Acceleration. Repeat Gravimetric-
dc.relation.referencesenObservations: Theory and Results. Moscow: MGK-
dc.relation.referencesenPrezidiume AS USSR, Neftegeofizika Publ., 87–100.-
dc.relation.referencesenDzhun, I. V. (1992). Mathematical Treatment of-
dc.relation.referencesenAstronomical and Space-Based Information in-
dc.relation.referencesennon-Gaussian Observation Errors. Extended-
dc.relation.referencesenAbstract of Doctoral Dissertation in Physics and-
dc.relation.referencesenMathematics. Main Astronomical Observatory of-
dc.relation.referencesenthe National Academy of Sciences of Ukraine, Kyiv.-
dc.relation.referencesenDzhun, I. V. (2012). Distribution of errors in multiple-
dc.relation.referencesenlarge-volume observations. Measurement Techniques, 55, 393–396., Springer.-
dc.relation.referencesenDzhun, I. V. (2015). The Non-classical Errors Theory-
dc.relation.referencesenof Measurements. Rivne: Estero Publ., 168 [in Russian].-
dc.relation.referencesenDzhun, J. V. (2017). A new importnat tool in the field-
dc.relation.referencesenof intelligent data analysis. Alcide De Gasperi-
dc.relation.referencesenUniversity of Euroregional Economy in Jozefow.-
dc.relation.referencesenIntercultural Communication, 1/2, 162–175.-
dc.relation.referencesenEddington, A. S. (1933). Notes on the method of least-
dc.relation.referencesensquares. Proceedings of the Physical Society, 45(2), 271.-
dc.relation.referencesenFedorov, E. P. (1963). Nutation and forced motion of-
dc.relation.referencesenthe Earth's pole from the data of latitude-
dc.relation.referencesenobservations. Oxford, New York, Pergamon Press.-
dc.relation.referencesenGauss, C. F. (1809). Theoria motus corporum coelestium-
dc.relation.referencesenin sectionibus conicis solem ambientium (Vol. 7). Perthes et Besser.-
dc.relation.referencesenGauss, C. F. (1823). Theoria combinationis observationum-
dc.relation.referencesenerroribus minimis obnoxiae (Vol. 1). Henricus Dieterich.-
dc.relation.referencesenGeary, R. C. (1947). Testing for Normality. Biometrika, 34, 209–242.-
dc.relation.referencesenHammond, J. A., & Faller, J. E. (1971). A laser-interferometer-
dc.relation.referencesensystem for the absolute determination of-
dc.relation.referencesenthe acceleration due to gravity. Precision Measurement-
dc.relation.referencesenand Fundamental Constants; Proceedings, 343, 457.-
dc.relation.referencesenHampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., &-
dc.relation.referencesenStahel, W. A. (1986). Robust statistics (pp. 29-30). New York:Wiley.-
dc.relation.referencesenHulme, H. R., & Symms, L. S. T. (1939). The law of-
dc.relation.referencesenerror and the combination of observations. Monthly-
dc.relation.referencesenNotices of the Royal Astronomical Society, 99, 642.-
dc.relation.referencesenIdelson, N. I. (1947). Method of Least Squares and the-
dc.relation.referencesenTheory of Math. Treatment of Observations). [In-
dc.relation.referencesenRussian]. Geodezizdat. Moscow – Leningrad.-
dc.relation.referencesenJeffreys, H. (1938). The law of error and the-
dc.relation.referencesencombination of observations. Philosophical-
dc.relation.referencesenTransactions of the Royal Society of London.-
dc.relation.referencesenSeries A, Mathematical and Physical Sciences, 237(777), 231–271.-
dc.relation.referencesenJeffreys, H. (1939). The law of error in the Greenwich-
dc.relation.referencesenvariation of latitude observations. Monthly Notices-
dc.relation.referencesenof the Royal Astronomical Society, 99, 703.-
dc.relation.referencesenJeffreys, H. (1998). The theory of probability. OUP Oxford.-
dc.relation.referencesenLucacs, E. A. (1942). A Characterization of the normal-
dc.relation.referencesenDistribution. Annals of Mathematical Statistics. 13, 91–93.-
dc.relation.referencesenNewcomb, S. (1886). A generalized theory of the-
dc.relation.referencesencombination of observations so as to obtain the-
dc.relation.referencesenbest result. American journal of Mathematics, 343–366.-
dc.relation.referencesenOgorodnikov, K. F. (1928). Procedure for Reducing-
dc.relation.referencesenObservations by introducing Mean Weights in-
dc.relation.referencesenapplication to Statistical Study of Stellar Motions,-
dc.relation.referencesenAstron., Jurn., 5(1), 1–21.-
dc.citation.journalTitleГеодинаміка : науковий журнал-
dc.citation.issue1 (26)-
dc.citation.spage5-
dc.citation.epage16-
dc.coverage.placenameЛьвів-
dc.subject.udc550.831-
dc.subject.udc528.11-
dc.subject.udc519.281-
Appears in Collections:Геодинаміка. – 2019. – №1(26)

Files in This Item:
File Description SizeFormat 
2019n1__26__Dvulit_P-Diagnostics_of_the_high_precise_5-16.pdf926.81 kBAdobe PDFView/Open
2019n1__26__Dvulit_P-Diagnostics_of_the_high_precise_5-16__COVER.png495.5 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.