https://oldena.lpnu.ua/handle/ntb/45666
Title: | Methodology for Determining the Response Time of Thermo Transducers for Measuring the Temperature of Gas Flows |
Other Titles: | Методика визначення часу термічної реакції термоперетворювачів для вимірювання температури газових потоків |
Authors: | Фединець, Василь Fedynets, Vasyl |
Affiliation: | Національний університет “Львівська політехніка” Lviv Polytechnic National University |
Bibliographic description (Ukraine): | Fedynets V. Methodology for Determining the Response Time of Thermo Transducers for Measuring the Temperature of Gas Flows / Vasyl Fedynets // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 5. — No 2. — P. 89–93. |
Bibliographic description (International): | Fedynets V. Methodology for Determining the Response Time of Thermo Transducers for Measuring the Temperature of Gas Flows / Vasyl Fedynets // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 5. — No 2. — P. 89–93. |
Is part of: | Energy Engineering and Control Systems, 2 (5), 2019 |
Issue: | 2 |
Issue Date: | 26-Feb-2019 |
Publisher: | Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | методика газовий потік вимірювання температура час термічної реакції methodology gas flow measurements temperature time of thermal reaction |
Number of pages: | 5 |
Page range: | 89-93 |
Start page: | 89 |
End page: | 93 |
Abstract: | Температура газових потоків є важливим параметром технологічного процесу, визначає кількісні і
якісні показники вихідного продукту, наявність браку, стан технологічного обладнання, а також безпеку
функціонування процесу. Тому вимірювання її необхідно проводити неперервно, з високою точністю,
невеликою інерційністю і високою надійністю, оскільки інформативний сигнал про значення температури
використовується в інформаційно-вимірювальних системах та автоматичних системах контролю та
регулювання. При вимірюванні змінної в часі температури газового потоку термоперетворювач (ТП) не
встигає стежити за зміною температури, оскільки для зміни температури його чутливого елемента потрібен
деякий час. Спотворення показів ТП через нестаціонарності теплових процесів і в самому ТП, і між ним і
навколишнім середовищем обумовлені його інерційними властивостями (термічною реакцією). Завдяки цим
властивостям виникає додаткова різниця між температурою чутливого елемента і температурою газового
потоку, яка визначає динамічну похибку вимірювання температури потоку. В статті запропоновано методику
визначення інерційних властивостей ТП для різних швидкостей газового потоку за виміряним значенням при
одній базовій швидкості потоку. Gas flow temperature is an important parameter of the process, determines the quantitative and qualitative indicators of the original product, the presence of defects, the state of technological equipment, as well as the safety of the process. Therefore, its measurement must be carried out continuously, with high accuracy, low inertia and high reliability, since the information signal about the value of temperature is used in information-measuring systems and automatic control and regulation systems. When measuring a time-varying gas flow temperature, the thermo transducer does not have time to keep track of the temperature change since it takes some time to change the temperature of its sensitive element. Distortion of thermo transducer due to the non-stationarity of thermal processes both in the thermo transducer itself and between it and the environment is due to its inertial properties (thermal reaction). Due to these properties, there is an additional difference between the temperature of the sensing element and the temperature of the gas flow, which determines the dynamic error in measuring the flow temperature. The method of determination of inertial properties of thermo transducer for different gas flow velocities by the measured value at one basic flow velocity is proposed in the article. |
URI: | https://ena.lpnu.ua/handle/ntb/45666 |
Copyright owner: | © Національний університет “Львівська політехніка”, 2019 |
References (Ukraine): | 1. Lutsyk, Ya. T., Huk, O. P., Lakh, O. I., & Stadnyk, B. I. (2006). Temperature measurement: theory and practice. Lviv: Beskyd Bit, 560 p. (in Ukrainian) 2. GOST 6651: 2014. (2015) Metrology. Platinum, copper and nickel resistance thermal converters. General specifications and test methods (GOST 6651-2009, IDT). – K .: Ministry of Economic Development of Ukraine, 2015. 26 p. (in Ukrainian) 3. V. Fedynets, L. Lesovoi, B.Chaban. (2017) Research and analysis of Rapidly Changing Gas Flow Temperatures Measurement Methods. Energy Eng. Control Syst., Vol. 3, No. 1, p. 29–36. (in Ukrainian) 4. Yaryshev, N. A (1990) Theoretical bases of measurement of non-stationary temperatures . “Energoatomizdat“ Publ. in Moscow, 254 p. (in Russian) 5. Moffat, R. J. (1962) Gas Temperature Measurement; Temperatures, Its Measurement and Control in Science and Industry / Editor-in-Chief Charles M. Herzfeld, Reinhold Publishing Corporation in NY, 3 (2), p. 553–571. 6. Kondratiev, G. M (1957) Thermal measurements. “Mashgiz” Publ. in Moscow, 244 p. (in Russian) 7. Petunin, A. N (1974) Measurement of gas flow parameters. “Mechanical Engineering” Publ. in Moscow, 260 p. (in Russian) 8. Fedynets, V. O, Lesovoy, L. V. (2014) Influence of heat transfer conditions on the inertia of thermo-converters for measuring the temperature of gas flows , Metrology and devices No. 2 (46), p. 9–12. (in Ukrainian) 9. Fedynets, V. O. (2013) Investigation of the stability of the metrological characteristics of the sensing elements of thermoconverters for measuring the temperature of gas flows, Lviv Polytechnic National University, Environmental, Engineering, Automation, No. 758, p. 152–155. (in Ukrainian) 10. IEC 60751 (2008) International standard. Industrial platinum resistance thermometers and platinum temperature sensors. IEC, 22 p |
References (International): | 1. Lutsyk, Ya. T., Huk, O. P., Lakh, O. I., & Stadnyk, B. I. (2006). Temperature measurement: theory and practice. Lviv: Beskyd Bit, 560 p. (in Ukrainian) 2. GOST 6651: 2014. (2015) Metrology. Platinum, copper and nickel resistance thermal converters. General specifications and test methods (GOST 6651-2009, IDT), K ., Ministry of Economic Development of Ukraine, 2015. 26 p. (in Ukrainian) 3. V. Fedynets, L. Lesovoi, B.Chaban. (2017) Research and analysis of Rapidly Changing Gas Flow Temperatures Measurement Methods. Energy Eng. Control Syst., Vol. 3, No. 1, p. 29–36. (in Ukrainian) 4. Yaryshev, N. A (1990) Theoretical bases of measurement of non-stationary temperatures . "Energoatomizdat" Publ. in Moscow, 254 p. (in Russian) 5. Moffat, R. J. (1962) Gas Temperature Measurement; Temperatures, Its Measurement and Control in Science and Industry, Editor-in-Chief Charles M. Herzfeld, Reinhold Publishing Corporation in NY, 3 (2), p. 553–571. 6. Kondratiev, G. M (1957) Thermal measurements. "Mashgiz" Publ. in Moscow, 244 p. (in Russian) 7. Petunin, A. N (1974) Measurement of gas flow parameters. "Mechanical Engineering" Publ. in Moscow, 260 p. (in Russian) 8. Fedynets, V. O, Lesovoy, L. V. (2014) Influence of heat transfer conditions on the inertia of thermo-converters for measuring the temperature of gas flows , Metrology and devices No. 2 (46), p. 9–12. (in Ukrainian) 9. Fedynets, V. O. (2013) Investigation of the stability of the metrological characteristics of the sensing elements of thermoconverters for measuring the temperature of gas flows, Lviv Polytechnic National University, Environmental, Engineering, Automation, No. 758, p. 152–155. (in Ukrainian) 10. IEC 60751 (2008) International standard. Industrial platinum resistance thermometers and platinum temperature sensors. IEC, 22 p |
Content type: | Article |
Appears in Collections: | Energy Engineering And Control Systems. – 2019. – Vol. 5, No. 2 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v5n2_Fedynets_V-Methodology_for_Determining_89-93.pdf | 246.8 kB | Adobe PDF | View/Open | |
2019v5n2_Fedynets_V-Methodology_for_Determining_89-93__COVER.png | 419.47 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.