https://oldena.lpnu.ua/handle/ntb/45501
Title: | Modeling of the regional gravitational field using first and second derivative of spherical functions |
Other Titles: | Моделювання регіонального гравітаційного поля з використанням першої та другої похідних сферичних функцій |
Authors: | Джуман, Б. Б. Dzhuman, B. |
Affiliation: | Національний університет “Львівська політехніка” Lviv Polytechnic National University |
Bibliographic description (Ukraine): | Dzhuman B. Modeling of the regional gravitational field using first and second derivative of spherical functions / B. Dzhuman // Геодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник. — Львів : Видавництво Львівської політехніки, 2018. — Том 88. — С. 5–12. |
Bibliographic description (International): | Dzhuman B. Modeling of the regional gravitational field using first and second derivative of spherical functions / B. Dzhuman // Geodesy, cartography and aerial photography : interdepartmental scientific and technical review. — Vydavnytstvo Lvivskoi politekhniky, 2018. — Vol 88. — P. 5–12. |
Is part of: | Геодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник (88), 2018 Geodesy, cartography and aerial photography : interdepartmental scientific and technical review (88), 2018 |
Journal/Collection: | Геодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник |
Volume: | 88 |
Issue Date: | 26-Feb-2018 |
Publisher: | Видавництво Львівської політехніки |
Place of the edition/event: | Львів |
UDC: | 528.2 |
Keywords: | сферичні функції сферична трапеція перша та друга похідна spherical functions spherical trapezium first and second derivative |
Number of pages: | 8 |
Page range: | 5-12 |
Start page: | 5 |
End page: | 12 |
URI: | https://ena.lpnu.ua/handle/ntb/45501 |
Copyright owner: | © Національний університет “Львівська політехніка”, 2018 |
References (Ukraine): | De Santis, A. (1991). Translated origin spherical cap harmonic analysis, Geophys. J. Int., 106, 253–263. De Santis, A. (1992). Conventional spherical harmonic analysis for regional modeling of the geomagnetic feld, Geophys. Res. Lett., 19, 1065–1067. De Santis, A. & Torta, J., (1997). Spherical cap harmonic analysis: a comment on its proper use for local gravity field representation, J. of Geodesy, 71, 526–532. Dzhuman, B. B. (2013). On the constraction of local gravitational field model. Geodynamics, 1(14), 29–33. Dzhuman, B. B. (2014). Approximation of gravity anomalies by method of ASHA on Arctic area. Geodesy, cartography and aerial photography, 80, 62–68. Dzhuman, B. B. (2017). Modeling of the gravitational field on spherical trapezium. Geodesy, cartography and aerial photography, 86, 5–10. Haines, G. (1985). Spherical cap harmonic analysis, J. Geophys. Res., 90, 2583–2591. Haines, G. (1988). Computer programs for spherical cap harmonic analysis of potential and general felds, Comput. Geosci., 14, 413–447. Hobson, E. (1931). The theory of spherical and ellipsoidal harmonics, New York: Cambridge Univ. Press, 476 p. Hwang, C. & Chen, S. (1997). Fully normalized spherical cap harmonics: application to the analysis of sea-level data from TOPEX/POSEIDON and ERS-1, Geophys. J. Int., 129, 450–460. Kelvin, L. & Tait, P. (1896). Treatise on natural philosophy. New York: Cambridge Univ. Press, 852 p. Macdonald, H. (1900). Zeroes of the spherical harmonic m ( ) n P m considered as a function of n, Proc. London Math. Soc., 31, 264–278. Marchenko, A. & Dzhuman, B. (2015). Regional quasigeoid determination: an application to arctic gravity project, Geodynamics, 18, 7 –17. Pavlis, N. K., Holmes, S. A., Kenyon, S. C. & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. geophys. Res., 117, B04406. doi:10.1029/2011JB008916. Smirnov, V. (1954). The course of higher mathematics. III, 2, Moscow: Science. Sneeuw, N. (1994). Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective, Geophys. J. Int., 118, 707–716. Thebault, E., Mandea, M. & Schott, J. (2006). Modeling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R-SCHA), J. geophys. Res., 111, 111–113. Yankiv-Vitkovska, L. M. & Dzhuman, B. B. (2017). Constructing of regional model of ionosphere parameters. Geodesy, cartography and aerial photography, 85, 27–35. |
References (International): | De Santis, A. (1991). Translated origin spherical cap harmonic analysis, Geophys. J. Int., 106, 253–263. De Santis, A. (1992). Conventional spherical harmonic analysis for regional modeling of the geomagnetic feld, Geophys. Res. Lett., 19, 1065–1067. De Santis, A. & Torta, J., (1997). Spherical cap harmonic analysis: a comment on its proper use for local gravity field representation, J. of Geodesy, 71, 526–532. Dzhuman, B. B. (2013). On the constraction of local gravitational field model. Geodynamics, 1(14), 29–33. Dzhuman, B. B. (2014). Approximation of gravity anomalies by method of ASHA on Arctic area. Geodesy, cartography and aerial photography, 80, 62–68. Dzhuman, B. B. (2017). Modeling of the gravitational field on spherical trapezium. Geodesy, cartography and aerial photography, 86, 5–10. Haines, G. (1985). Spherical cap harmonic analysis, J. Geophys. Res., 90, 2583–2591. Haines, G. (1988). Computer programs for spherical cap harmonic analysis of potential and general felds, Comput. Geosci., 14, 413–447. Hobson, E. (1931). The theory of spherical and ellipsoidal harmonics, New York: Cambridge Univ. Press, 476 p. Hwang, C. & Chen, S. (1997). Fully normalized spherical cap harmonics: application to the analysis of sea-level data from TOPEX/POSEIDON and ERS-1, Geophys. J. Int., 129, 450–460. Kelvin, L. & Tait, P. (1896). Treatise on natural philosophy. New York: Cambridge Univ. Press, 852 p. Macdonald, H. (1900). Zeroes of the spherical harmonic m ( ) n P m considered as a function of n, Proc. London Math. Soc., 31, 264–278. Marchenko, A. & Dzhuman, B. (2015). Regional quasigeoid determination: an application to arctic gravity project, Geodynamics, 18, 7 –17. Pavlis, N. K., Holmes, S. A., Kenyon, S. C. & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. geophys. Res., 117, B04406. doi:10.1029/2011JB008916. Smirnov, V. (1954). The course of higher mathematics. III, 2, Moscow: Science. Sneeuw, N. (1994). Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective, Geophys. J. Int., 118, 707–716. Thebault, E., Mandea, M. & Schott, J. (2006). Modeling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R-SCHA), J. geophys. Res., 111, 111–113. Yankiv-Vitkovska, L. M. & Dzhuman, B. B. (2017). Constructing of regional model of ionosphere parameters. Geodesy, cartography and aerial photography, 85, 27–35. |
Content type: | Article |
Appears in Collections: | Геодезія, картографія і аерофотознімання. – 2018. – Випуск 88 |
File | Description | Size | Format | |
---|---|---|---|---|
2018v88_Dzhuman_B-Modeling_of_the_regional_gravitational_5-12.pdf | 351.73 kB | Adobe PDF | View/Open | |
2018v88_Dzhuman_B-Modeling_of_the_regional_gravitational_5-12__COVER.png | 503.8 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.