Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/45501
Full metadata record
DC FieldValueLanguage
dc.contributor.authorДжуман, Б. Б.
dc.contributor.authorDzhuman, B.
dc.date.accessioned2019-11-06T12:28:52Z-
dc.date.available2019-11-06T12:28:52Z-
dc.date.created2018-02-26
dc.date.issued2018-02-26
dc.identifier.citationDzhuman B. Modeling of the regional gravitational field using first and second derivative of spherical functions / B. Dzhuman // Геодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник. — Львів : Видавництво Львівської політехніки, 2018. — Том 88. — С. 5–12.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45501-
dc.format.extent5-12
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.relation.ispartofГеодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник (88), 2018
dc.relation.ispartofGeodesy, cartography and aerial photography : interdepartmental scientific and technical review (88), 2018
dc.subjectсферичні функції
dc.subjectсферична трапеція
dc.subjectперша та друга похідна
dc.subjectspherical functions
dc.subjectspherical trapezium
dc.subjectfirst and second derivative
dc.titleModeling of the regional gravitational field using first and second derivative of spherical functions
dc.title.alternativeМоделювання регіонального гравітаційного поля з використанням першої та другої похідних сферичних функцій
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages8
dc.identifier.citationenDzhuman B. Modeling of the regional gravitational field using first and second derivative of spherical functions / B. Dzhuman // Geodesy, cartography and aerial photography : interdepartmental scientific and technical review. — Vydavnytstvo Lvivskoi politekhniky, 2018. — Vol 88. — P. 5–12.
dc.relation.referencesDe Santis, A. (1991). Translated origin spherical cap harmonic analysis, Geophys. J. Int., 106, 253–263.
dc.relation.referencesDe Santis, A. (1992). Conventional spherical harmonic analysis for regional modeling of the geomagnetic feld, Geophys. Res. Lett., 19, 1065–1067.
dc.relation.referencesDe Santis, A. & Torta, J., (1997). Spherical cap harmonic analysis: a comment on its proper use for local gravity field representation, J. of Geodesy, 71, 526–532.
dc.relation.referencesDzhuman, B. B. (2013). On the constraction of local gravitational field model. Geodynamics, 1(14), 29–33.
dc.relation.referencesDzhuman, B. B. (2014). Approximation of gravity anomalies by method of ASHA on Arctic area. Geodesy, cartography and aerial photography, 80, 62–68.
dc.relation.referencesDzhuman, B. B. (2017). Modeling of the gravitational field on spherical trapezium. Geodesy, cartography and aerial photography, 86, 5–10.
dc.relation.referencesHaines, G. (1985). Spherical cap harmonic analysis, J. Geophys. Res., 90, 2583–2591.
dc.relation.referencesHaines, G. (1988). Computer programs for spherical cap harmonic analysis of potential and general felds, Comput. Geosci., 14, 413–447.
dc.relation.referencesHobson, E. (1931). The theory of spherical and ellipsoidal harmonics, New York: Cambridge Univ. Press, 476 p.
dc.relation.referencesHwang, C. & Chen, S. (1997). Fully normalized spherical cap harmonics: application to the analysis of sea-level data from TOPEX/POSEIDON and ERS-1, Geophys. J. Int., 129, 450–460.
dc.relation.referencesKelvin, L. & Tait, P. (1896). Treatise on natural philosophy. New York: Cambridge Univ. Press, 852 p. Macdonald, H. (1900). Zeroes of the spherical harmonic m ( ) n P m considered as a function of n, Proc. London Math. Soc., 31, 264–278.
dc.relation.referencesMarchenko, A. & Dzhuman, B. (2015). Regional quasigeoid determination: an application to arctic gravity project, Geodynamics, 18, 7 –17.
dc.relation.referencesPavlis, N. K., Holmes, S. A., Kenyon, S. C. & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. geophys. Res., 117, B04406. doi:10.1029/2011JB008916.
dc.relation.referencesSmirnov, V. (1954). The course of higher mathematics. III, 2, Moscow: Science.
dc.relation.referencesSneeuw, N. (1994). Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective, Geophys. J. Int., 118, 707–716.
dc.relation.referencesThebault, E., Mandea, M. & Schott, J. (2006). Modeling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R-SCHA), J. geophys. Res., 111, 111–113.
dc.relation.referencesYankiv-Vitkovska, L. M. & Dzhuman, B. B. (2017). Constructing of regional model of ionosphere parameters. Geodesy, cartography and aerial photography, 85, 27–35.
dc.relation.referencesenDe Santis, A. (1991). Translated origin spherical cap harmonic analysis, Geophys. J. Int., 106, 253–263.
dc.relation.referencesenDe Santis, A. (1992). Conventional spherical harmonic analysis for regional modeling of the geomagnetic feld, Geophys. Res. Lett., 19, 1065–1067.
dc.relation.referencesenDe Santis, A. & Torta, J., (1997). Spherical cap harmonic analysis: a comment on its proper use for local gravity field representation, J. of Geodesy, 71, 526–532.
dc.relation.referencesenDzhuman, B. B. (2013). On the constraction of local gravitational field model. Geodynamics, 1(14), 29–33.
dc.relation.referencesenDzhuman, B. B. (2014). Approximation of gravity anomalies by method of ASHA on Arctic area. Geodesy, cartography and aerial photography, 80, 62–68.
dc.relation.referencesenDzhuman, B. B. (2017). Modeling of the gravitational field on spherical trapezium. Geodesy, cartography and aerial photography, 86, 5–10.
dc.relation.referencesenHaines, G. (1985). Spherical cap harmonic analysis, J. Geophys. Res., 90, 2583–2591.
dc.relation.referencesenHaines, G. (1988). Computer programs for spherical cap harmonic analysis of potential and general felds, Comput. Geosci., 14, 413–447.
dc.relation.referencesenHobson, E. (1931). The theory of spherical and ellipsoidal harmonics, New York: Cambridge Univ. Press, 476 p.
dc.relation.referencesenHwang, C. & Chen, S. (1997). Fully normalized spherical cap harmonics: application to the analysis of sea-level data from TOPEX/POSEIDON and ERS-1, Geophys. J. Int., 129, 450–460.
dc.relation.referencesenKelvin, L. & Tait, P. (1896). Treatise on natural philosophy. New York: Cambridge Univ. Press, 852 p. Macdonald, H. (1900). Zeroes of the spherical harmonic m ( ) n P m considered as a function of n, Proc. London Math. Soc., 31, 264–278.
dc.relation.referencesenMarchenko, A. & Dzhuman, B. (2015). Regional quasigeoid determination: an application to arctic gravity project, Geodynamics, 18, 7 –17.
dc.relation.referencesenPavlis, N. K., Holmes, S. A., Kenyon, S. C. & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. geophys. Res., 117, B04406. doi:10.1029/2011JB008916.
dc.relation.referencesenSmirnov, V. (1954). The course of higher mathematics. III, 2, Moscow: Science.
dc.relation.referencesenSneeuw, N. (1994). Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective, Geophys. J. Int., 118, 707–716.
dc.relation.referencesenThebault, E., Mandea, M. & Schott, J. (2006). Modeling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R-SCHA), J. geophys. Res., 111, 111–113.
dc.relation.referencesenYankiv-Vitkovska, L. M. & Dzhuman, B. B. (2017). Constructing of regional model of ionosphere parameters. Geodesy, cartography and aerial photography, 85, 27–35.
dc.citation.journalTitleГеодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник
dc.citation.volume88
dc.citation.spage5
dc.citation.epage12
dc.coverage.placenameЛьвів
dc.subject.udc528.2
Appears in Collections:Геодезія, картографія і аерофотознімання. – 2018. – Випуск 88

Files in This Item:
File Description SizeFormat 
2018v88_Dzhuman_B-Modeling_of_the_regional_gravitational_5-12.pdf351.73 kBAdobe PDFView/Open
2018v88_Dzhuman_B-Modeling_of_the_regional_gravitational_5-12__COVER.png503.8 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.