Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/45197
Title: Combustion kinetics of petroleum coke by isoconversional modelling
Other Titles: Кінетика згоряння нафтового коксу згідно ізоконверсійного моделювання
Authors: Nyakuma, Bemgba
Oladokun, Olagoke
Bello, Aliyu
Affiliation: Universiti Teknologi Malaysia
Bibliographic description (Ukraine): Nyakuma B. Combustion kinetics of petroleum coke by isoconversional modelling / Bemgba Nyakuma, Olagoke Oladokun, Aliyu Bello // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 4. — P. 505–510.
Bibliographic description (International): Nyakuma B. Combustion kinetics of petroleum coke by isoconversional modelling / Bemgba Nyakuma, Olagoke Oladokun, Aliyu Bello // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 4. — P. 505–510.
Is part of: Chemistry & Chemical Technology, 4 (12), 2018
Journal/Collection: Chemistry & Chemical Technology
Issue: 4
Volume: 12
Issue Date: 20-Jan-2018
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Lviv
Keywords: згоряння
нафтовий кокс
ізоконверсійне моделювання
кінетика
combustion
petcoke
isoconversional model
kinetics
Number of pages: 6
Page range: 505-510
Start page: 505
End page: 510
Abstract: Вивчено фізико-хімічні характеристики та кінетику згоряння нафтового коксу або пек-коксу (НК). Ви- значено, що НK має високий вміст карбону, зв‘язаного карбону та високу теплотворну здатність, і низький вміст сульфуру та золи. Показано, що температура займання НК коливається в межах 764–795 К, пік розкладання 808–875 К та температура вигорання 857–933 К. За допомогою аналізу продуктивності згоряння та реакційної здатності визначено коефіцієнт запалювання, коефіцієнт перетворення, коефіцієнт вигорання та характеристичний коефіцієнт згоряння. Визначено також енергію активації та предекспонентний множник. Показано, що НK дуже реактивний під час згоряння всупереч даним літератури. На основі проведених досліджень встановлено, що спалювання є практичним підходом для видобутку енергії з НК.
1The study examined the physico-chemical characteristics and combustion kinetics of petroleum coke or petcoke (PCK). The results revealed that PCK contains significantly high carbon, fixed carbon, and calorific value with low sulphur, and ash content. The combustion characteristics of PCK revealed the temperatures of ignition ranged from 764 to 795 K; peak decomposition from 808 to 875 K and burn-out from 857 to 933 K. The combustion performance and reactivity analyses were examined based on the ignition ratio, devolatilization ratio, burnout ratio, and combustion characteristic factor were performed. The activation energy and preexponential factor were determined also. The results revealed that PCK is highly reactive during combustion contrary to previous reports in the literature. Overall, the findings demonstrate that combustion is a practical approach for energy recovery from petcoke.
URI: https://ena.lpnu.ua/handle/ntb/45197
Copyright owner: © Національний університет „Львівська політехніка“, 2018
©Nyakuma B., Oladokun O., Bello A., 2018
URL for reference material: https://doi.org/10.1016/j.enpol.2009.06.007
https://doi.org/10.1016/S0378-3820(99)00041-7
https://goo.gl/KWhmhf
https://goo.gl/P7R28C
https://doi.org/10.1016/j.apenergy.2015.01.009
https://doi.org/10.1016/j.fuel.2013.09.050
https://doi.org/10.1002/cjce.21908
https://doi.org/10.1016/j.fuel.2005.08.036
https://doi.org/10.1016/j.resconrec.2006.03.012
https://doi.org/10.1021/ef201231w
https://doi.org/10.1016/j.apenergy.2011.08.042
https://doi.org/10.1007/s11814-007-0090-y
https://doi.org/10.1016/j.applthermaleng.2015.01.026
https://doi.org/10.1016/j.ijmst.2012.08.009
https://doi.org/10.1016/j.fuel.2011.08.026
https://doi.org/10.1021/bk-2007-0959.ch003
https://doi.org/10.1016/j.enconman.2010.11.009
https://doi.org/10.1080/15567036.2016.1263254
https://doi.org/10.1016/j.apenergy.2011.12.056
https://doi.org/10.1016/j.jaap.2012.09.016
https://doi.org/10.21315/jps2016.27.3.1
https://doi.org/10.1016/j.applthermaleng.2016.04.165
https://doi.org/10.1021/acs.energyfuels.6b02000
https://doi.org/10.1016/j.biortech.2010.09.081
References (Ukraine): [1] Vivoda, V.: Energ. Policy, 2009, 37, 4615.https://doi.org/10.1016/j.enpol.2009.06.007
[2] BayramA., Müezzinoğlu A., Seyfioğlu R.: Fuel Process. Technol.,1999, 60, 111. https://doi.org/10.1016/S0378-3820(99)00041-7
[3] Green P.,Martin A.: 2015. Refining CapacityOutlook to 2020: 2015 Developments. Energy Insights. https://goo.gl/KWhmhf.
[4] Global Data: 2017. H1 2016 Global Capacity and Capital Expenditure Outlook for Refineries. DevelopingCountries Drive Growth in Global Refining Industry. https://goo.gl/P7R28C
[5] Zhang Y., YaoM., Gao S. et al.: Appl. Energ., 2015, 160, 820.https://doi.org/10.1016/j.apenergy.2015.01.009
[6] Nemanova V., Abedini A., Liliedahl T., Engvall K.: Fuel, 2014, 117,870. https://doi.org/10.1016/j.fuel.2013.09.050
[7]Murthy B., Sawarkar A., Deshmukh N. et al.: Can. J. Chem. Eng.,2014, 92, 441. https://doi.org/10.1002/cjce.21908
[8] Shlewit H., AlibrahimM.: Fuel, 2006, 85, 878.https://doi.org/10.1016/j.fuel.2005.08.036
[9] Chen J., Lu X.: Resour., Conserv., Recy., 2007, 49, 203.https://doi.org/10.1016/j.resconrec.2006.03.012
[10]MalekshahianM., Hill J.: Energ. Fuel., 2011, 25, 5250.https://doi.org/10.1021/ef201231w
[11] Yuan S., Zhou Z., Li J.,Wang F.: Appl. Energ., 2012, 92, 854.https://doi.org/10.1016/j.apenergy.2011.08.042
[12] Yoon S., Choi Y.-C., Lee S.-H., Lee J.-G.:Korean J. Chem. Eng.,2007, 24, 512. https://doi.org/10.1007/s11814-007-0090-y
[13] Jayaraman K., Gokalp I.: Appl. Therm. Eng., 2015, 80, 10.https://doi.org/10.1016/j.applthermaleng.2015.01.026
[14] QianW., Xie Q., Huang Y. et al.: Int. J. Mining Sci. Technol.,2012, 22, 645. https://doi.org/10.1016/j.ijmst.2012.08.009
[15] Yuzbasi N., Selçuk N.: Fuel, 2012, 92, 137.https://doi.org/10.1016/j.fuel.2011.08.026
[16] Patun R., Ramamurthi J., VetterM. et al.: Clean Fuels Production Using Plasma Energy Pyrolysis System[in:] Ogunsola O., Gamwo I. (Eds.) Ultraclean Transportation Fuels, ACS Publ. 2007.https://doi.org/10.1021/bk-2007-0959.ch003
[17] Zhan X., Jia J., Zhou Z., Wang F.: Energ. Convers. Manage., 2011,52, 1810. https://doi.org/10.1016/j.enconman.2010.11.009
[18]Munir S., Sattar H., NadeemA., Azam M.: Energ. Sourc. A: 2017,39, 775. https://doi.org/10.1080/15567036.2016.1263254
[19] Slopiecka K., Bartocci P., Fantozzi F.: Appl. Energ., 2012, 97, 491.https://doi.org/10.1016/j.apenergy.2011.12.056
[20] Lopez-VelazquezM., Santes V., Balmaseda J., Torres-Garcia E.: J.Anal. Appl. Pyrol., 2013, 99, 170.https://doi.org/10.1016/j.jaap.2012.09.016
[21] Nyakuma B., Oladokun O., JauroA., Nyakuma D.: IOP Conf. Series:Materials Science and Engineering, 2017, 217(1), 012013.
[22] Nyakuma B., Jauro A.: GeoSci. Eng., 2016, 62, 6.
[23] Nyakuma B.: Bulg. Chem. Commun., 2016, 48, 746.
[24] Nyakuma B., Jauro A., Oladokun O. et al.: J. Phys. Sci., 2016, 27,1. https://doi.org/10.21315/jps2016.27.3.1
[25] Oladokun O., Ahmad A., Abdullah T. et al.: Appl. Therm. Eng.,2016, 105, 931. https://doi.org/10.1016/j.applthermaleng.2016.04.165
[26] ParvezA., Hong Y., Lester E.,Wu T.: Energ. Fuel., 2017, 31,1555.https://doi.org/10.1021/acs.energyfuels.6b02000
[27] Shen D., Gu S., Jin B., FangM.: Biores. Technol., 2011, 102, 2047.https://doi.org/10.1016/j.biortech.2010.09.081
References (International): [1] Vivoda, V., Energ. Policy, 2009, 37, 4615.https://doi.org/10.1016/j.enpol.2009.06.007
[2] BayramA., Müezzinoğlu A., Seyfioğlu R., Fuel Process. Technol.,1999, 60, 111. https://doi.org/10.1016/S0378-3820(99)00041-7
[3] Green P.,Martin A., 2015. Refining CapacityOutlook to 2020: 2015 Developments. Energy Insights. https://goo.gl/KWhmhf.
[4] Global Data: 2017. H1 2016 Global Capacity and Capital Expenditure Outlook for Refineries. DevelopingCountries Drive Growth in Global Refining Industry. https://goo.gl/P7R28C
[5] Zhang Y., YaoM., Gao S. et al., Appl. Energ., 2015, 160, 820.https://doi.org/10.1016/j.apenergy.2015.01.009
[6] Nemanova V., Abedini A., Liliedahl T., Engvall K., Fuel, 2014, 117,870. https://doi.org/10.1016/j.fuel.2013.09.050
[7]Murthy B., Sawarkar A., Deshmukh N. et al., Can. J. Chem. Eng.,2014, 92, 441. https://doi.org/10.1002/cjce.21908
[8] Shlewit H., AlibrahimM., Fuel, 2006, 85, 878.https://doi.org/10.1016/j.fuel.2005.08.036
[9] Chen J., Lu X., Resour., Conserv., Recy., 2007, 49, 203.https://doi.org/10.1016/j.resconrec.2006.03.012
[10]MalekshahianM., Hill J., Energ. Fuel., 2011, 25, 5250.https://doi.org/10.1021/ef201231w
[11] Yuan S., Zhou Z., Li J.,Wang F., Appl. Energ., 2012, 92, 854.https://doi.org/10.1016/j.apenergy.2011.08.042
[12] Yoon S., Choi Y.-C., Lee S.-H., Lee J.-G.:Korean J. Chem. Eng.,2007, 24, 512. https://doi.org/10.1007/s11814-007-0090-y
[13] Jayaraman K., Gokalp I., Appl. Therm. Eng., 2015, 80, 10.https://doi.org/10.1016/j.applthermaleng.2015.01.026
[14] QianW., Xie Q., Huang Y. et al., Int. J. Mining Sci. Technol.,2012, 22, 645. https://doi.org/10.1016/j.ijmst.2012.08.009
[15] Yuzbasi N., Selçuk N., Fuel, 2012, 92, 137.https://doi.org/10.1016/j.fuel.2011.08.026
[16] Patun R., Ramamurthi J., VetterM. et al., Clean Fuels Production Using Plasma Energy Pyrolysis System[in:] Ogunsola O., Gamwo I. (Eds.) Ultraclean Transportation Fuels, ACS Publ. 2007.https://doi.org/10.1021/bk-2007-0959.ch003
[17] Zhan X., Jia J., Zhou Z., Wang F., Energ. Convers. Manage., 2011,52, 1810. https://doi.org/10.1016/j.enconman.2010.11.009
[18]Munir S., Sattar H., NadeemA., Azam M., Energ. Sourc. A: 2017,39, 775. https://doi.org/10.1080/15567036.2016.1263254
[19] Slopiecka K., Bartocci P., Fantozzi F., Appl. Energ., 2012, 97, 491.https://doi.org/10.1016/j.apenergy.2011.12.056
[20] Lopez-VelazquezM., Santes V., Balmaseda J., Torres-Garcia E., J.Anal. Appl. Pyrol., 2013, 99, 170.https://doi.org/10.1016/j.jaap.2012.09.016
[21] Nyakuma B., Oladokun O., JauroA., Nyakuma D., IOP Conf. Series:Materials Science and Engineering, 2017, 217(1), 012013.
[22] Nyakuma B., Jauro A., GeoSci. Eng., 2016, 62, 6.
[23] Nyakuma B., Bulg. Chem. Commun., 2016, 48, 746.
[24] Nyakuma B., Jauro A., Oladokun O. et al., J. Phys. Sci., 2016, 27,1. https://doi.org/10.21315/jps2016.27.3.1
[25] Oladokun O., Ahmad A., Abdullah T. et al., Appl. Therm. Eng.,2016, 105, 931. https://doi.org/10.1016/j.applthermaleng.2016.04.165
[26] ParvezA., Hong Y., Lester E.,Wu T., Energ. Fuel., 2017, 31,1555.https://doi.org/10.1021/acs.energyfuels.6b02000
[27] Shen D., Gu S., Jin B., FangM., Biores. Technol., 2011, 102, 2047.https://doi.org/10.1016/j.biortech.2010.09.081
Content type: Article
Appears in Collections:Chemistry & Chemical Technology. – 2018. – Vol. 12, No. 4

Files in This Item:
File Description SizeFormat 
2018v12n4_Nyakuma_B-Combustion_kinetics_of_505-510.pdf343.66 kBAdobe PDFView/Open
2018v12n4_Nyakuma_B-Combustion_kinetics_of_505-510__COVER.png560.66 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.