Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/45197
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNyakuma, Bemgba
dc.contributor.authorOladokun, Olagoke
dc.contributor.authorBello, Aliyu
dc.date.accessioned2019-06-21T07:57:52Z-
dc.date.available2019-06-21T07:57:52Z-
dc.date.created2018-01-20
dc.date.issued2018-01-20
dc.identifier.citationNyakuma B. Combustion kinetics of petroleum coke by isoconversional modelling / Bemgba Nyakuma, Olagoke Oladokun, Aliyu Bello // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 4. — P. 505–510.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45197-
dc.description.abstractВивчено фізико-хімічні характеристики та кінетику згоряння нафтового коксу або пек-коксу (НК). Ви- значено, що НK має високий вміст карбону, зв‘язаного карбону та високу теплотворну здатність, і низький вміст сульфуру та золи. Показано, що температура займання НК коливається в межах 764–795 К, пік розкладання 808–875 К та температура вигорання 857–933 К. За допомогою аналізу продуктивності згоряння та реакційної здатності визначено коефіцієнт запалювання, коефіцієнт перетворення, коефіцієнт вигорання та характеристичний коефіцієнт згоряння. Визначено також енергію активації та предекспонентний множник. Показано, що НK дуже реактивний під час згоряння всупереч даним літератури. На основі проведених досліджень встановлено, що спалювання є практичним підходом для видобутку енергії з НК.
dc.description.abstract1The study examined the physico-chemical characteristics and combustion kinetics of petroleum coke or petcoke (PCK). The results revealed that PCK contains significantly high carbon, fixed carbon, and calorific value with low sulphur, and ash content. The combustion characteristics of PCK revealed the temperatures of ignition ranged from 764 to 795 K; peak decomposition from 808 to 875 K and burn-out from 857 to 933 K. The combustion performance and reactivity analyses were examined based on the ignition ratio, devolatilization ratio, burnout ratio, and combustion characteristic factor were performed. The activation energy and preexponential factor were determined also. The results revealed that PCK is highly reactive during combustion contrary to previous reports in the literature. Overall, the findings demonstrate that combustion is a practical approach for energy recovery from petcoke.
dc.format.extent505-510
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (12), 2018
dc.relation.urihttps://doi.org/10.1016/j.enpol.2009.06.007
dc.relation.urihttps://doi.org/10.1016/S0378-3820(99)00041-7
dc.relation.urihttps://goo.gl/KWhmhf
dc.relation.urihttps://goo.gl/P7R28C
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2015.01.009
dc.relation.urihttps://doi.org/10.1016/j.fuel.2013.09.050
dc.relation.urihttps://doi.org/10.1002/cjce.21908
dc.relation.urihttps://doi.org/10.1016/j.fuel.2005.08.036
dc.relation.urihttps://doi.org/10.1016/j.resconrec.2006.03.012
dc.relation.urihttps://doi.org/10.1021/ef201231w
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2011.08.042
dc.relation.urihttps://doi.org/10.1007/s11814-007-0090-y
dc.relation.urihttps://doi.org/10.1016/j.applthermaleng.2015.01.026
dc.relation.urihttps://doi.org/10.1016/j.ijmst.2012.08.009
dc.relation.urihttps://doi.org/10.1016/j.fuel.2011.08.026
dc.relation.urihttps://doi.org/10.1021/bk-2007-0959.ch003
dc.relation.urihttps://doi.org/10.1016/j.enconman.2010.11.009
dc.relation.urihttps://doi.org/10.1080/15567036.2016.1263254
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2011.12.056
dc.relation.urihttps://doi.org/10.1016/j.jaap.2012.09.016
dc.relation.urihttps://doi.org/10.21315/jps2016.27.3.1
dc.relation.urihttps://doi.org/10.1016/j.applthermaleng.2016.04.165
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.6b02000
dc.relation.urihttps://doi.org/10.1016/j.biortech.2010.09.081
dc.subjectзгоряння
dc.subjectнафтовий кокс
dc.subjectізоконверсійне моделювання
dc.subjectкінетика
dc.subjectcombustion
dc.subjectpetcoke
dc.subjectisoconversional model
dc.subjectkinetics
dc.titleCombustion kinetics of petroleum coke by isoconversional modelling
dc.title.alternativeКінетика згоряння нафтового коксу згідно ізоконверсійного моделювання
dc.typeArticle
dc.rights.holder© Національний університет „Львівська політехніка“, 2018
dc.rights.holder©Nyakuma B., Oladokun O., Bello A., 2018
dc.contributor.affiliationUniversiti Teknologi Malaysia
dc.format.pages6
dc.identifier.citationenNyakuma B. Combustion kinetics of petroleum coke by isoconversional modelling / Bemgba Nyakuma, Olagoke Oladokun, Aliyu Bello // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 4. — P. 505–510.
dc.relation.references[1] Vivoda, V.: Energ. Policy, 2009, 37, 4615.https://doi.org/10.1016/j.enpol.2009.06.007
dc.relation.references[2] BayramA., Müezzinoğlu A., Seyfioğlu R.: Fuel Process. Technol.,1999, 60, 111. https://doi.org/10.1016/S0378-3820(99)00041-7
dc.relation.references[3] Green P.,Martin A.: 2015. Refining CapacityOutlook to 2020: 2015 Developments. Energy Insights. https://goo.gl/KWhmhf.
dc.relation.references[4] Global Data: 2017. H1 2016 Global Capacity and Capital Expenditure Outlook for Refineries. DevelopingCountries Drive Growth in Global Refining Industry. https://goo.gl/P7R28C
dc.relation.references[5] Zhang Y., YaoM., Gao S. et al.: Appl. Energ., 2015, 160, 820.https://doi.org/10.1016/j.apenergy.2015.01.009
dc.relation.references[6] Nemanova V., Abedini A., Liliedahl T., Engvall K.: Fuel, 2014, 117,870. https://doi.org/10.1016/j.fuel.2013.09.050
dc.relation.references[7]Murthy B., Sawarkar A., Deshmukh N. et al.: Can. J. Chem. Eng.,2014, 92, 441. https://doi.org/10.1002/cjce.21908
dc.relation.references[8] Shlewit H., AlibrahimM.: Fuel, 2006, 85, 878.https://doi.org/10.1016/j.fuel.2005.08.036
dc.relation.references[9] Chen J., Lu X.: Resour., Conserv., Recy., 2007, 49, 203.https://doi.org/10.1016/j.resconrec.2006.03.012
dc.relation.references[10]MalekshahianM., Hill J.: Energ. Fuel., 2011, 25, 5250.https://doi.org/10.1021/ef201231w
dc.relation.references[11] Yuan S., Zhou Z., Li J.,Wang F.: Appl. Energ., 2012, 92, 854.https://doi.org/10.1016/j.apenergy.2011.08.042
dc.relation.references[12] Yoon S., Choi Y.-C., Lee S.-H., Lee J.-G.:Korean J. Chem. Eng.,2007, 24, 512. https://doi.org/10.1007/s11814-007-0090-y
dc.relation.references[13] Jayaraman K., Gokalp I.: Appl. Therm. Eng., 2015, 80, 10.https://doi.org/10.1016/j.applthermaleng.2015.01.026
dc.relation.references[14] QianW., Xie Q., Huang Y. et al.: Int. J. Mining Sci. Technol.,2012, 22, 645. https://doi.org/10.1016/j.ijmst.2012.08.009
dc.relation.references[15] Yuzbasi N., Selçuk N.: Fuel, 2012, 92, 137.https://doi.org/10.1016/j.fuel.2011.08.026
dc.relation.references[16] Patun R., Ramamurthi J., VetterM. et al.: Clean Fuels Production Using Plasma Energy Pyrolysis System[in:] Ogunsola O., Gamwo I. (Eds.) Ultraclean Transportation Fuels, ACS Publ. 2007.https://doi.org/10.1021/bk-2007-0959.ch003
dc.relation.references[17] Zhan X., Jia J., Zhou Z., Wang F.: Energ. Convers. Manage., 2011,52, 1810. https://doi.org/10.1016/j.enconman.2010.11.009
dc.relation.references[18]Munir S., Sattar H., NadeemA., Azam M.: Energ. Sourc. A: 2017,39, 775. https://doi.org/10.1080/15567036.2016.1263254
dc.relation.references[19] Slopiecka K., Bartocci P., Fantozzi F.: Appl. Energ., 2012, 97, 491.https://doi.org/10.1016/j.apenergy.2011.12.056
dc.relation.references[20] Lopez-VelazquezM., Santes V., Balmaseda J., Torres-Garcia E.: J.Anal. Appl. Pyrol., 2013, 99, 170.https://doi.org/10.1016/j.jaap.2012.09.016
dc.relation.references[21] Nyakuma B., Oladokun O., JauroA., Nyakuma D.: IOP Conf. Series:Materials Science and Engineering, 2017, 217(1), 012013.
dc.relation.references[22] Nyakuma B., Jauro A.: GeoSci. Eng., 2016, 62, 6.
dc.relation.references[23] Nyakuma B.: Bulg. Chem. Commun., 2016, 48, 746.
dc.relation.references[24] Nyakuma B., Jauro A., Oladokun O. et al.: J. Phys. Sci., 2016, 27,1. https://doi.org/10.21315/jps2016.27.3.1
dc.relation.references[25] Oladokun O., Ahmad A., Abdullah T. et al.: Appl. Therm. Eng.,2016, 105, 931. https://doi.org/10.1016/j.applthermaleng.2016.04.165
dc.relation.references[26] ParvezA., Hong Y., Lester E.,Wu T.: Energ. Fuel., 2017, 31,1555.https://doi.org/10.1021/acs.energyfuels.6b02000
dc.relation.references[27] Shen D., Gu S., Jin B., FangM.: Biores. Technol., 2011, 102, 2047.https://doi.org/10.1016/j.biortech.2010.09.081
dc.relation.referencesen[1] Vivoda, V., Energ. Policy, 2009, 37, 4615.https://doi.org/10.1016/j.enpol.2009.06.007
dc.relation.referencesen[2] BayramA., Müezzinoğlu A., Seyfioğlu R., Fuel Process. Technol.,1999, 60, 111. https://doi.org/10.1016/S0378-3820(99)00041-7
dc.relation.referencesen[3] Green P.,Martin A., 2015. Refining CapacityOutlook to 2020: 2015 Developments. Energy Insights. https://goo.gl/KWhmhf.
dc.relation.referencesen[4] Global Data: 2017. H1 2016 Global Capacity and Capital Expenditure Outlook for Refineries. DevelopingCountries Drive Growth in Global Refining Industry. https://goo.gl/P7R28C
dc.relation.referencesen[5] Zhang Y., YaoM., Gao S. et al., Appl. Energ., 2015, 160, 820.https://doi.org/10.1016/j.apenergy.2015.01.009
dc.relation.referencesen[6] Nemanova V., Abedini A., Liliedahl T., Engvall K., Fuel, 2014, 117,870. https://doi.org/10.1016/j.fuel.2013.09.050
dc.relation.referencesen[7]Murthy B., Sawarkar A., Deshmukh N. et al., Can. J. Chem. Eng.,2014, 92, 441. https://doi.org/10.1002/cjce.21908
dc.relation.referencesen[8] Shlewit H., AlibrahimM., Fuel, 2006, 85, 878.https://doi.org/10.1016/j.fuel.2005.08.036
dc.relation.referencesen[9] Chen J., Lu X., Resour., Conserv., Recy., 2007, 49, 203.https://doi.org/10.1016/j.resconrec.2006.03.012
dc.relation.referencesen[10]MalekshahianM., Hill J., Energ. Fuel., 2011, 25, 5250.https://doi.org/10.1021/ef201231w
dc.relation.referencesen[11] Yuan S., Zhou Z., Li J.,Wang F., Appl. Energ., 2012, 92, 854.https://doi.org/10.1016/j.apenergy.2011.08.042
dc.relation.referencesen[12] Yoon S., Choi Y.-C., Lee S.-H., Lee J.-G.:Korean J. Chem. Eng.,2007, 24, 512. https://doi.org/10.1007/s11814-007-0090-y
dc.relation.referencesen[13] Jayaraman K., Gokalp I., Appl. Therm. Eng., 2015, 80, 10.https://doi.org/10.1016/j.applthermaleng.2015.01.026
dc.relation.referencesen[14] QianW., Xie Q., Huang Y. et al., Int. J. Mining Sci. Technol.,2012, 22, 645. https://doi.org/10.1016/j.ijmst.2012.08.009
dc.relation.referencesen[15] Yuzbasi N., Selçuk N., Fuel, 2012, 92, 137.https://doi.org/10.1016/j.fuel.2011.08.026
dc.relation.referencesen[16] Patun R., Ramamurthi J., VetterM. et al., Clean Fuels Production Using Plasma Energy Pyrolysis System[in:] Ogunsola O., Gamwo I. (Eds.) Ultraclean Transportation Fuels, ACS Publ. 2007.https://doi.org/10.1021/bk-2007-0959.ch003
dc.relation.referencesen[17] Zhan X., Jia J., Zhou Z., Wang F., Energ. Convers. Manage., 2011,52, 1810. https://doi.org/10.1016/j.enconman.2010.11.009
dc.relation.referencesen[18]Munir S., Sattar H., NadeemA., Azam M., Energ. Sourc. A: 2017,39, 775. https://doi.org/10.1080/15567036.2016.1263254
dc.relation.referencesen[19] Slopiecka K., Bartocci P., Fantozzi F., Appl. Energ., 2012, 97, 491.https://doi.org/10.1016/j.apenergy.2011.12.056
dc.relation.referencesen[20] Lopez-VelazquezM., Santes V., Balmaseda J., Torres-Garcia E., J.Anal. Appl. Pyrol., 2013, 99, 170.https://doi.org/10.1016/j.jaap.2012.09.016
dc.relation.referencesen[21] Nyakuma B., Oladokun O., JauroA., Nyakuma D., IOP Conf. Series:Materials Science and Engineering, 2017, 217(1), 012013.
dc.relation.referencesen[22] Nyakuma B., Jauro A., GeoSci. Eng., 2016, 62, 6.
dc.relation.referencesen[23] Nyakuma B., Bulg. Chem. Commun., 2016, 48, 746.
dc.relation.referencesen[24] Nyakuma B., Jauro A., Oladokun O. et al., J. Phys. Sci., 2016, 27,1. https://doi.org/10.21315/jps2016.27.3.1
dc.relation.referencesen[25] Oladokun O., Ahmad A., Abdullah T. et al., Appl. Therm. Eng.,2016, 105, 931. https://doi.org/10.1016/j.applthermaleng.2016.04.165
dc.relation.referencesen[26] ParvezA., Hong Y., Lester E.,Wu T., Energ. Fuel., 2017, 31,1555.https://doi.org/10.1021/acs.energyfuels.6b02000
dc.relation.referencesen[27] Shen D., Gu S., Jin B., FangM., Biores. Technol., 2011, 102, 2047.https://doi.org/10.1016/j.biortech.2010.09.081
dc.citation.journalTitleChemistry & Chemical Technology
dc.citation.volume12
dc.citation.issue4
dc.citation.spage505
dc.citation.epage510
dc.coverage.placenameLviv
Appears in Collections:Chemistry & Chemical Technology. – 2018. – Vol. 12, No. 4

Files in This Item:
File Description SizeFormat 
2018v12n4_Nyakuma_B-Combustion_kinetics_of_505-510.pdf343.66 kBAdobe PDFView/Open
2018v12n4_Nyakuma_B-Combustion_kinetics_of_505-510__COVER.png560.66 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.