DC Field | Value | Language |
dc.contributor.author | Nyakuma, Bemgba | |
dc.contributor.author | Oladokun, Olagoke | |
dc.contributor.author | Bello, Aliyu | |
dc.date.accessioned | 2019-06-21T07:57:52Z | - |
dc.date.available | 2019-06-21T07:57:52Z | - |
dc.date.created | 2018-01-20 | |
dc.date.issued | 2018-01-20 | |
dc.identifier.citation | Nyakuma B. Combustion kinetics of petroleum coke by isoconversional modelling / Bemgba Nyakuma, Olagoke Oladokun, Aliyu Bello // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 4. — P. 505–510. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/45197 | - |
dc.description.abstract | Вивчено фізико-хімічні характеристики та
кінетику згоряння нафтового коксу або пек-коксу (НК). Ви-
значено, що НK має високий вміст карбону, зв‘язаного карбону
та високу теплотворну здатність, і низький вміст сульфуру та
золи. Показано, що температура займання НК коливається в
межах 764–795 К, пік розкладання 808–875 К та температура
вигорання 857–933 К. За допомогою аналізу продуктивності
згоряння та реакційної здатності визначено коефіцієнт
запалювання, коефіцієнт перетворення, коефіцієнт вигорання
та характеристичний коефіцієнт згоряння. Визначено також
енергію активації та предекспонентний множник. Показано, що
НK дуже реактивний під час згоряння всупереч даним
літератури. На основі проведених досліджень встановлено, що
спалювання є практичним підходом для видобутку енергії з НК. | |
dc.description.abstract | 1The study examined the physico-chemical
characteristics and combustion kinetics of petroleum coke
or petcoke (PCK). The results revealed that PCK contains
significantly high carbon, fixed carbon, and calorific value
with low sulphur, and ash content. The combustion
characteristics of PCK revealed the temperatures of
ignition ranged from 764 to 795 K; peak decomposition
from 808 to 875 K and burn-out from 857 to 933 K. The
combustion performance and reactivity analyses were
examined based on the ignition ratio, devolatilization
ratio, burnout ratio, and combustion characteristic factor
were performed. The activation energy and preexponential
factor were determined also. The results
revealed that PCK is highly reactive during combustion
contrary to previous reports in the literature. Overall, the
findings demonstrate that combustion is a practical
approach for energy recovery from petcoke. | |
dc.format.extent | 505-510 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 4 (12), 2018 | |
dc.relation.uri | https://doi.org/10.1016/j.enpol.2009.06.007 | |
dc.relation.uri | https://doi.org/10.1016/S0378-3820(99)00041-7 | |
dc.relation.uri | https://goo.gl/KWhmhf | |
dc.relation.uri | https://goo.gl/P7R28C | |
dc.relation.uri | https://doi.org/10.1016/j.apenergy.2015.01.009 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2013.09.050 | |
dc.relation.uri | https://doi.org/10.1002/cjce.21908 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2005.08.036 | |
dc.relation.uri | https://doi.org/10.1016/j.resconrec.2006.03.012 | |
dc.relation.uri | https://doi.org/10.1021/ef201231w | |
dc.relation.uri | https://doi.org/10.1016/j.apenergy.2011.08.042 | |
dc.relation.uri | https://doi.org/10.1007/s11814-007-0090-y | |
dc.relation.uri | https://doi.org/10.1016/j.applthermaleng.2015.01.026 | |
dc.relation.uri | https://doi.org/10.1016/j.ijmst.2012.08.009 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2011.08.026 | |
dc.relation.uri | https://doi.org/10.1021/bk-2007-0959.ch003 | |
dc.relation.uri | https://doi.org/10.1016/j.enconman.2010.11.009 | |
dc.relation.uri | https://doi.org/10.1080/15567036.2016.1263254 | |
dc.relation.uri | https://doi.org/10.1016/j.apenergy.2011.12.056 | |
dc.relation.uri | https://doi.org/10.1016/j.jaap.2012.09.016 | |
dc.relation.uri | https://doi.org/10.21315/jps2016.27.3.1 | |
dc.relation.uri | https://doi.org/10.1016/j.applthermaleng.2016.04.165 | |
dc.relation.uri | https://doi.org/10.1021/acs.energyfuels.6b02000 | |
dc.relation.uri | https://doi.org/10.1016/j.biortech.2010.09.081 | |
dc.subject | згоряння | |
dc.subject | нафтовий кокс | |
dc.subject | ізоконверсійне моделювання | |
dc.subject | кінетика | |
dc.subject | combustion | |
dc.subject | petcoke | |
dc.subject | isoconversional model | |
dc.subject | kinetics | |
dc.title | Combustion kinetics of petroleum coke by isoconversional modelling | |
dc.title.alternative | Кінетика згоряння нафтового коксу згідно ізоконверсійного моделювання | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2018 | |
dc.rights.holder | ©Nyakuma B., Oladokun O., Bello A., 2018 | |
dc.contributor.affiliation | Universiti Teknologi Malaysia | |
dc.format.pages | 6 | |
dc.identifier.citationen | Nyakuma B. Combustion kinetics of petroleum coke by isoconversional modelling / Bemgba Nyakuma, Olagoke Oladokun, Aliyu Bello // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 4. — P. 505–510. | |
dc.relation.references | [1] Vivoda, V.: Energ. Policy, 2009, 37, 4615.https://doi.org/10.1016/j.enpol.2009.06.007 | |
dc.relation.references | [2] BayramA., Müezzinoğlu A., Seyfioğlu R.: Fuel Process. Technol.,1999, 60, 111. https://doi.org/10.1016/S0378-3820(99)00041-7 | |
dc.relation.references | [3] Green P.,Martin A.: 2015. Refining CapacityOutlook to 2020: 2015 Developments. Energy Insights. https://goo.gl/KWhmhf. | |
dc.relation.references | [4] Global Data: 2017. H1 2016 Global Capacity and Capital Expenditure Outlook for Refineries. DevelopingCountries Drive Growth in Global Refining Industry. https://goo.gl/P7R28C | |
dc.relation.references | [5] Zhang Y., YaoM., Gao S. et al.: Appl. Energ., 2015, 160, 820.https://doi.org/10.1016/j.apenergy.2015.01.009 | |
dc.relation.references | [6] Nemanova V., Abedini A., Liliedahl T., Engvall K.: Fuel, 2014, 117,870. https://doi.org/10.1016/j.fuel.2013.09.050 | |
dc.relation.references | [7]Murthy B., Sawarkar A., Deshmukh N. et al.: Can. J. Chem. Eng.,2014, 92, 441. https://doi.org/10.1002/cjce.21908 | |
dc.relation.references | [8] Shlewit H., AlibrahimM.: Fuel, 2006, 85, 878.https://doi.org/10.1016/j.fuel.2005.08.036 | |
dc.relation.references | [9] Chen J., Lu X.: Resour., Conserv., Recy., 2007, 49, 203.https://doi.org/10.1016/j.resconrec.2006.03.012 | |
dc.relation.references | [10]MalekshahianM., Hill J.: Energ. Fuel., 2011, 25, 5250.https://doi.org/10.1021/ef201231w | |
dc.relation.references | [11] Yuan S., Zhou Z., Li J.,Wang F.: Appl. Energ., 2012, 92, 854.https://doi.org/10.1016/j.apenergy.2011.08.042 | |
dc.relation.references | [12] Yoon S., Choi Y.-C., Lee S.-H., Lee J.-G.:Korean J. Chem. Eng.,2007, 24, 512. https://doi.org/10.1007/s11814-007-0090-y | |
dc.relation.references | [13] Jayaraman K., Gokalp I.: Appl. Therm. Eng., 2015, 80, 10.https://doi.org/10.1016/j.applthermaleng.2015.01.026 | |
dc.relation.references | [14] QianW., Xie Q., Huang Y. et al.: Int. J. Mining Sci. Technol.,2012, 22, 645. https://doi.org/10.1016/j.ijmst.2012.08.009 | |
dc.relation.references | [15] Yuzbasi N., Selçuk N.: Fuel, 2012, 92, 137.https://doi.org/10.1016/j.fuel.2011.08.026 | |
dc.relation.references | [16] Patun R., Ramamurthi J., VetterM. et al.: Clean Fuels Production Using Plasma Energy Pyrolysis System[in:] Ogunsola O., Gamwo I. (Eds.) Ultraclean Transportation Fuels, ACS Publ. 2007.https://doi.org/10.1021/bk-2007-0959.ch003 | |
dc.relation.references | [17] Zhan X., Jia J., Zhou Z., Wang F.: Energ. Convers. Manage., 2011,52, 1810. https://doi.org/10.1016/j.enconman.2010.11.009 | |
dc.relation.references | [18]Munir S., Sattar H., NadeemA., Azam M.: Energ. Sourc. A: 2017,39, 775. https://doi.org/10.1080/15567036.2016.1263254 | |
dc.relation.references | [19] Slopiecka K., Bartocci P., Fantozzi F.: Appl. Energ., 2012, 97, 491.https://doi.org/10.1016/j.apenergy.2011.12.056 | |
dc.relation.references | [20] Lopez-VelazquezM., Santes V., Balmaseda J., Torres-Garcia E.: J.Anal. Appl. Pyrol., 2013, 99, 170.https://doi.org/10.1016/j.jaap.2012.09.016 | |
dc.relation.references | [21] Nyakuma B., Oladokun O., JauroA., Nyakuma D.: IOP Conf. Series:Materials Science and Engineering, 2017, 217(1), 012013. | |
dc.relation.references | [22] Nyakuma B., Jauro A.: GeoSci. Eng., 2016, 62, 6. | |
dc.relation.references | [23] Nyakuma B.: Bulg. Chem. Commun., 2016, 48, 746. | |
dc.relation.references | [24] Nyakuma B., Jauro A., Oladokun O. et al.: J. Phys. Sci., 2016, 27,1. https://doi.org/10.21315/jps2016.27.3.1 | |
dc.relation.references | [25] Oladokun O., Ahmad A., Abdullah T. et al.: Appl. Therm. Eng.,2016, 105, 931. https://doi.org/10.1016/j.applthermaleng.2016.04.165 | |
dc.relation.references | [26] ParvezA., Hong Y., Lester E.,Wu T.: Energ. Fuel., 2017, 31,1555.https://doi.org/10.1021/acs.energyfuels.6b02000 | |
dc.relation.references | [27] Shen D., Gu S., Jin B., FangM.: Biores. Technol., 2011, 102, 2047.https://doi.org/10.1016/j.biortech.2010.09.081 | |
dc.relation.referencesen | [1] Vivoda, V., Energ. Policy, 2009, 37, 4615.https://doi.org/10.1016/j.enpol.2009.06.007 | |
dc.relation.referencesen | [2] BayramA., Müezzinoğlu A., Seyfioğlu R., Fuel Process. Technol.,1999, 60, 111. https://doi.org/10.1016/S0378-3820(99)00041-7 | |
dc.relation.referencesen | [3] Green P.,Martin A., 2015. Refining CapacityOutlook to 2020: 2015 Developments. Energy Insights. https://goo.gl/KWhmhf. | |
dc.relation.referencesen | [4] Global Data: 2017. H1 2016 Global Capacity and Capital Expenditure Outlook for Refineries. DevelopingCountries Drive Growth in Global Refining Industry. https://goo.gl/P7R28C | |
dc.relation.referencesen | [5] Zhang Y., YaoM., Gao S. et al., Appl. Energ., 2015, 160, 820.https://doi.org/10.1016/j.apenergy.2015.01.009 | |
dc.relation.referencesen | [6] Nemanova V., Abedini A., Liliedahl T., Engvall K., Fuel, 2014, 117,870. https://doi.org/10.1016/j.fuel.2013.09.050 | |
dc.relation.referencesen | [7]Murthy B., Sawarkar A., Deshmukh N. et al., Can. J. Chem. Eng.,2014, 92, 441. https://doi.org/10.1002/cjce.21908 | |
dc.relation.referencesen | [8] Shlewit H., AlibrahimM., Fuel, 2006, 85, 878.https://doi.org/10.1016/j.fuel.2005.08.036 | |
dc.relation.referencesen | [9] Chen J., Lu X., Resour., Conserv., Recy., 2007, 49, 203.https://doi.org/10.1016/j.resconrec.2006.03.012 | |
dc.relation.referencesen | [10]MalekshahianM., Hill J., Energ. Fuel., 2011, 25, 5250.https://doi.org/10.1021/ef201231w | |
dc.relation.referencesen | [11] Yuan S., Zhou Z., Li J.,Wang F., Appl. Energ., 2012, 92, 854.https://doi.org/10.1016/j.apenergy.2011.08.042 | |
dc.relation.referencesen | [12] Yoon S., Choi Y.-C., Lee S.-H., Lee J.-G.:Korean J. Chem. Eng.,2007, 24, 512. https://doi.org/10.1007/s11814-007-0090-y | |
dc.relation.referencesen | [13] Jayaraman K., Gokalp I., Appl. Therm. Eng., 2015, 80, 10.https://doi.org/10.1016/j.applthermaleng.2015.01.026 | |
dc.relation.referencesen | [14] QianW., Xie Q., Huang Y. et al., Int. J. Mining Sci. Technol.,2012, 22, 645. https://doi.org/10.1016/j.ijmst.2012.08.009 | |
dc.relation.referencesen | [15] Yuzbasi N., Selçuk N., Fuel, 2012, 92, 137.https://doi.org/10.1016/j.fuel.2011.08.026 | |
dc.relation.referencesen | [16] Patun R., Ramamurthi J., VetterM. et al., Clean Fuels Production Using Plasma Energy Pyrolysis System[in:] Ogunsola O., Gamwo I. (Eds.) Ultraclean Transportation Fuels, ACS Publ. 2007.https://doi.org/10.1021/bk-2007-0959.ch003 | |
dc.relation.referencesen | [17] Zhan X., Jia J., Zhou Z., Wang F., Energ. Convers. Manage., 2011,52, 1810. https://doi.org/10.1016/j.enconman.2010.11.009 | |
dc.relation.referencesen | [18]Munir S., Sattar H., NadeemA., Azam M., Energ. Sourc. A: 2017,39, 775. https://doi.org/10.1080/15567036.2016.1263254 | |
dc.relation.referencesen | [19] Slopiecka K., Bartocci P., Fantozzi F., Appl. Energ., 2012, 97, 491.https://doi.org/10.1016/j.apenergy.2011.12.056 | |
dc.relation.referencesen | [20] Lopez-VelazquezM., Santes V., Balmaseda J., Torres-Garcia E., J.Anal. Appl. Pyrol., 2013, 99, 170.https://doi.org/10.1016/j.jaap.2012.09.016 | |
dc.relation.referencesen | [21] Nyakuma B., Oladokun O., JauroA., Nyakuma D., IOP Conf. Series:Materials Science and Engineering, 2017, 217(1), 012013. | |
dc.relation.referencesen | [22] Nyakuma B., Jauro A., GeoSci. Eng., 2016, 62, 6. | |
dc.relation.referencesen | [23] Nyakuma B., Bulg. Chem. Commun., 2016, 48, 746. | |
dc.relation.referencesen | [24] Nyakuma B., Jauro A., Oladokun O. et al., J. Phys. Sci., 2016, 27,1. https://doi.org/10.21315/jps2016.27.3.1 | |
dc.relation.referencesen | [25] Oladokun O., Ahmad A., Abdullah T. et al., Appl. Therm. Eng.,2016, 105, 931. https://doi.org/10.1016/j.applthermaleng.2016.04.165 | |
dc.relation.referencesen | [26] ParvezA., Hong Y., Lester E.,Wu T., Energ. Fuel., 2017, 31,1555.https://doi.org/10.1021/acs.energyfuels.6b02000 | |
dc.relation.referencesen | [27] Shen D., Gu S., Jin B., FangM., Biores. Technol., 2011, 102, 2047.https://doi.org/10.1016/j.biortech.2010.09.081 | |
dc.citation.journalTitle | Chemistry & Chemical Technology | |
dc.citation.volume | 12 | |
dc.citation.issue | 4 | |
dc.citation.spage | 505 | |
dc.citation.epage | 510 | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry & Chemical Technology. – 2018. – Vol. 12, No. 4
|