DC Field | Value | Language |
dc.contributor.author | Кунтий, Орест Іванович | |
dc.contributor.author | Буклів, Р. Л. | |
dc.contributor.author | Бойко, Ю. В. | |
dc.contributor.author | Гребень, Т. В. | |
dc.contributor.author | Лисенко, А. В. | |
dc.contributor.author | Kuntyi, O. I. | |
dc.contributor.author | Bukliv, R. L. | |
dc.contributor.author | Boyko, Yu. V. | |
dc.contributor.author | Hreben, T. V. | |
dc.contributor.author | Lysenko, A. V. | |
dc.date.accessioned | 2019-05-21T12:54:23Z | - |
dc.date.available | 2019-05-21T12:54:23Z | - |
dc.date.created | 2018-02-26 | |
dc.date.issued | 2018-02-26 | |
dc.identifier.citation | Nanomaterials and nanotechnology in water purification. Review / O. I. Kuntyi, R. L. Bukliv, Yu. V. Boyko, T. V. Hreben, A. V. Lysenko // Chemistry, Technology and Application of Substance. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 1. — No 1. — P. 27–37. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/45030 | - |
dc.description.abstract | Висвітлено останні досягнення та застосування нанотехнологій для очищення
стічних вод. Наноматеріали мають високу реакційну здатність і високий ступінь функ-
ціоналізації, велику специфічну поверхню, що робить їх придатними для застосування в
очищенні стічних вод та для опріснення води. Розглянуто застосування різних
наноматеріалів, таких як наночастинки металів, оксиди металів, вуглецеві сполуки,
цеоліт, фільтраційні мембрани тощо, у нанофільтрації, адсорбції, розділенні органічних
та неорганічних речовин та фотокаталітичній деградації органічних забруднювачів,
зокрема теоретичні основи та механізми. | |
dc.description.abstract | This article briefly reviews the recent advances and application of nanotechnology for
wastewater treatment. Nanomaterials have high reactivity and a high degree of
functionalization, large specific surface area, which makes them suitable for applications in
wastewater treatment and for water desalination. Аpplication of various nanomaterials such
as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in
nanofiltration, adsorption, separation of organic and inorganic substances and photocatalytic
degradation of organic pollutants is discussed, including theoretical fundamentals and
mechanisms. | |
dc.format.extent | 27-37 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substance, 1 (1), 2018 | |
dc.subject | очищення стічних вод | |
dc.subject | наноматеріали | |
dc.subject | опріснення | |
dc.subject | нано- фільтрація | |
dc.subject | наносорбент | |
dc.subject | фотокаталіз | |
dc.subject | wastewater treatment | |
dc.subject | nanomaterials | |
dc.subject | desalination | |
dc.subject | nanofiltration | |
dc.subject | nanosorbent | |
dc.subject | photocatalysis | |
dc.title | Nanomaterials and nanotechnology in water purification. Review | |
dc.title.alternative | Наноматеріали та нанотехнології в очищенні води. Огляд | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2018 | |
dc.rights.holder | © Кунтий О. І., Буклів Р. Л., Бойко Ю. В., Гребень Т. В., Лисенко А. В., 2018 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.format.pages | 11 | |
dc.identifier.citationen | Nanomaterials and nanotechnology in water purification. Review / O. I. Kuntyi, R. L. Bukliv, Yu. V. Boyko, T. V. Hreben, A. V. Lysenko // Chemistry, Technology and Application of Substance. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 1. — No 1. — P. 27–37. | |
dc.relation.references | 1. Abu-Dief A. M., Hamdan S. K. Functionalization of magnetic nano particles: synthesis, characterization and their application in water purification // American Journal of Nanosciences. – 2016. – Vol. 2, No 3. – P. 26–40. | |
dc.relation.references | 2. Baruah S.,Khan M. N., Dutta J. Perspectives and applications of nanotechnology in water treatment // Environmental Chemistry Letters. – 2015. – Vol. 14. – P. 1–14. | |
dc.relation.references | 3. Shams Ashaghi K., Ebrahimi M., Czermak P. Ceramic ultra- and nanofiltration membranes for oilfield produced water treatment: a mini review // The Open Environmental Journal. – 2007. – Vol. 1. – P. 1–8. | |
dc.relation.references | 4. Bora T., Dutta J. Applications of nanotechnology in wastewater treatment – a review // Journal of Nanoscience and Nanotechnology. – 2014. – Vol. 14. – P. 613–626. | |
dc.relation.references | 5. Membranes and nanotechnologies / V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, S. S. Ivanchev and A. B. Yaroslavtsev // Nanotechnologies in Russia. – 2008. – Vol. 3. – P. 656–687. | |
dc.relation.references | 6. Nanofiltration for water and wastewater treatment – a mini review /H. K. Shon, S. Phuntsho, D. S. Chaudhary, S. Vigneswaran, J. Cho // Drinking Water Engineering and Science. – 2013. – Vol. 6. – P. 47–53. | |
dc.relation.references | 7. Potential of advanced nano-structured membranes for landfill leachate treatment: a review / Z. Dabaghian, M. Peyravi, M. Jahanshahi, A. S. Rad // ChemBioEng Reviews. – 2018. – Vol. 5, No. 2. – P. 1–20. | |
dc.relation.references | 8. Highly hydrophilic electrospunpolyacrylonitrile/polyvinypyrro-lidonenanofibers incorporated with gentamicin as filter medium for dam water and wastewater treatment / A. R. Alharbi, I. M. Alarifi, W. S. Khan, R. Asmatulu // Journal of Membrane and Separation Technology. – 2016. – Vol. 5, No 2. – P. 38–56. | |
dc.relation.references | 9. Dairy wastewater treatment using integrated membrane systems / A. C. Bortoluzzi, J. A. Faitão, M. Di Luccio, R. M. Dallago, J. Steffens, G. L. Zabot, M. V. Tres // Journal of Environmental Chemical Engineering. – 2017. – Vol. 5. – P. 4819–4827. | |
dc.relation.references | 10. Physicochemical characterization of tight nanofiltration membranes fordairy wastewater treatment / Z. Chen, J. Luo, X. Hang, Y. Wan // Journal of Membrane Science. – 2018. – Vol. 547. – P. 51–63. | |
dc.relation.references | 11. Membrane bioreactor and promising application for textile industry in Vietnam / T. V. Luong, S. Schmidt, S. A. Deowan, J. Hoinkis, A. Figoli, F. Galiano // 13th Global Conference on Sustainable Manufacturing. Procedia CIRP. – 2014. – P. 1–6. | |
dc.relation.references | 12. Sharma V., Sharma A. Nanotechnology: an emerging future trend in wastewater treatment with its innovative products and processes // International Journal of Enhanced Research in Science Technology & Engineering. – 2012. – Vol. 1, No 2. – P. 1–8. | |
dc.relation.references | 13. Design and function of biomimetic multilayer water purification membranes / S. Ling, Z. Qin, W. Huang, S. Cao, D. L. Kaplan, M. J. Buehler // Scies Advances. – 2017. – Vol. 3. – P. 1–11. | |
dc.relation.references | 14. Clay mixtures and the mechanical properties of microporous and nanoporous ceramic water filters / E. Annan, K. Kan-Dapaah, S. T. Azeko, K. Mustapha, J. Asare, M. G. Zebaze Kana, W. Soboyejo // Journal of Materials in Civil Engineering. – 2016. – Vol. 28, No 10. – P. 04016105(1-11). | |
dc.relation.references | 15. Tight ultrafiltration ceramic membrane for separation of dyes and mixed salts (both NaCl/Na2SO4) in textile wastewater treatment / X. Ma, P. Chen, M. Zhou, Z. Zhong, F. Zhang, W. Xing // Industrial & Engineering Chemistry Research. – 2017. – Vol. 56. – P. 7070−7079. | |
dc.relation.references | 16. Synthesis of titania–γ-alumina multilayer nanomembranes on performance-improved alumina supports for wastewater treatment / M. Shayesteh, A. Samimi, M. S. Afarani, M. Khorram // Desalination and Water Treatment. – 2015. – Vol. 57. – P. 1–8. | |
dc.relation.references | 17. Ungur G., Hruza J. Modified polyurethane nanofibers as antibacterial filters for air and water purification // RSC Advances. – 2017. – Vol. 7. – P. 49177–49187. | |
dc.relation.references | 18. Printing ultrathin graphene oxide nanofiltration membranes for water purification / M. Fathizadeh, H. N. Tien, K. Khivantsev, J.-T. Chen, M. Yu. // Journal of Materials Chemistry A. – 2017. – Vol. 5, No 39. – P. 20860–20866. | |
dc.relation.references | 19. Nanocomposite membranesfor water purification/ S. Hernández, M. Gui, D. Davenport, L. Ormsbee, D. Bhattacharyya // Conference: Kentucky Water Resources Annual Symposium At: Lexington, KY. – 2015. | |
dc.relation.references | 20. Kuntyi O. I. Electrochemistry and Morphology of Disperse Metals (ukr.). – Lviv: Publ. House Lviv Polytechnic National University, 2008. – 208 p. | |
dc.relation.references | 21. Yavors’kyi V. T., Znak Z. O., Mnykh R. V. Influence of cavitation treatment on the physicochemical properties of calcium hydroxide // Materials Science. – 2013. – Vol. 49, No 3. – P. 368–374. | |
dc.relation.references | 22. Nosratinia F., Ghahremani H., Shirazian S. Preparation and characterization of nanoporous ceramic membranes for separation of water from ethanol // Desalination and Water Treatment. – 2014. – Vol. 54. – P. 1–6. | |
dc.relation.references | 23. A flexible, robust and antifouling asymmetric membrane based on ultra-long ceramic/polymeric fibers for high-efficiency separation of oil/water emulsions / K. Wang, W. Yiming, J. Saththasivam, Z. Liu // Nanoscale. – 2017. – No 26. – P. 1–22. | |
dc.relation.references | 24. Amphi-functional mesoporous silica nanoparticles for dye separation/ P. Shinde, S. S. Gupta, B. Singh, V. Polshettiwar, B. L. V. Prasad. // Journal of Materials Chemistry A. – 2017. – No 28. – P. 14914–14921. | |
dc.relation.references | 25. Functionalizedmesoporoussilica: absorbentsforwaterpurification/ S. Nasreen, A. Urooj, U. Rafique, S. Ehrman// Desalination and water treatment. – 2016. – Vol. 57. – P. 1–11. | |
dc.relation.references | 26. Phosphoryl functionalized mesoporous silica for uranium adsorption / X. Guo, Y. Feng, L. Ma, D. Gao, J. Jing, J. Yu, H. Sun, H. Gong, Y. Zhang // Applied Surface Science. – 2017. – Vol. 402. – P. 53–60. | |
dc.relation.references | 27. Comparative study of graphene hydrogels and aerogels reveals the important role of buried water in pollutant adsorption / J. Ma, Y. Sun, M. Zhang, M. Yang, X. Gong, F. Yu, J. Zheng // Environmental Science & Technology. – 2017. – Vol. 51, No 21. – P. 12283–12292. | |
dc.relation.references | 28. Nyongesa F., Aduda B. Electrophoretic deposition of titanium dioxide thin films for photocatalytic water purification systems // Advances in Materials. – 2017. – Vol. 6, No 4. – P. 31–37. | |
dc.relation.references | 29. Porous ceramics based on hybrid inorganic tetrapodal networks for efficient photocatalysis and water purification / J. Gröttrup, F. Schütt, D. Smazna, O. Lupan, R. Adelung, Y. K. Mishra // Ceramics International. – 2017. – Vol. 43. – P. 14915–14922. | |
dc.relation.references | 30. Habba Y. G., Capochichi-Gnambodoe M., Leprince-Wang Y. Enhanced Photocatalytic Activity of Iron-Doped ZnO Nanowires for Water Purification // Applied Sciences. – 2017. – Vol. 7. – P. 1185 (1–10). | |
dc.relation.referencesen | 1. Abu-Dief A. M., Hamdan S. K. Functionalization of magnetic nano particles: synthesis, characterization and their application in water purification, American Journal of Nanosciences, 2016, Vol. 2, No 3, P. 26–40. | |
dc.relation.referencesen | 2. Baruah S.,Khan M. N., Dutta J. Perspectives and applications of nanotechnology in water treatment, Environmental Chemistry Letters, 2015, Vol. 14, P. 1–14. | |
dc.relation.referencesen | 3. Shams Ashaghi K., Ebrahimi M., Czermak P. Ceramic ultra- and nanofiltration membranes for oilfield produced water treatment: a mini review, The Open Environmental Journal, 2007, Vol. 1, P. 1–8. | |
dc.relation.referencesen | 4. Bora T., Dutta J. Applications of nanotechnology in wastewater treatment – a review, Journal of Nanoscience and Nanotechnology, 2014, Vol. 14, P. 613–626. | |
dc.relation.referencesen | 5. Membranes and nanotechnologies, V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, S. S. Ivanchev and A. B. Yaroslavtsev, Nanotechnologies in Russia, 2008, Vol. 3, P. 656–687. | |
dc.relation.referencesen | 6. Nanofiltration for water and wastewater treatment – a mini review /H. K. Shon, S. Phuntsho, D. S. Chaudhary, S. Vigneswaran, J. Cho, Drinking Water Engineering and Science, 2013, Vol. 6, P. 47–53. | |
dc.relation.referencesen | 7. Potential of advanced nano-structured membranes for landfill leachate treatment: a review, Z. Dabaghian, M. Peyravi, M. Jahanshahi, A. S. Rad, ChemBioEng Reviews, 2018, Vol. 5, No. 2, P. 1–20. | |
dc.relation.referencesen | 8. Highly hydrophilic electrospunpolyacrylonitrile/polyvinypyrro-lidonenanofibers incorporated with gentamicin as filter medium for dam water and wastewater treatment, A. R. Alharbi, I. M. Alarifi, W. S. Khan, R. Asmatulu, Journal of Membrane and Separation Technology, 2016, Vol. 5, No 2, P. 38–56. | |
dc.relation.referencesen | 9. Dairy wastewater treatment using integrated membrane systems, A. C. Bortoluzzi, J. A. Faitão, M. Di Luccio, R. M. Dallago, J. Steffens, G. L. Zabot, M. V. Tres, Journal of Environmental Chemical Engineering, 2017, Vol. 5, P. 4819–4827. | |
dc.relation.referencesen | 10. Physicochemical characterization of tight nanofiltration membranes fordairy wastewater treatment, Z. Chen, J. Luo, X. Hang, Y. Wan, Journal of Membrane Science, 2018, Vol. 547, P. 51–63. | |
dc.relation.referencesen | 11. Membrane bioreactor and promising application for textile industry in Vietnam, T. V. Luong, S. Schmidt, S. A. Deowan, J. Hoinkis, A. Figoli, F. Galiano, 13th Global Conference on Sustainable Manufacturing. Procedia CIRP, 2014, P. 1–6. | |
dc.relation.referencesen | 12. Sharma V., Sharma A. Nanotechnology: an emerging future trend in wastewater treatment with its innovative products and processes, International Journal of Enhanced Research in Science Technology & Engineering, 2012, Vol. 1, No 2, P. 1–8. | |
dc.relation.referencesen | 13. Design and function of biomimetic multilayer water purification membranes, S. Ling, Z. Qin, W. Huang, S. Cao, D. L. Kaplan, M. J. Buehler, Scies Advances, 2017, Vol. 3, P. 1–11. | |
dc.relation.referencesen | 14. Clay mixtures and the mechanical properties of microporous and nanoporous ceramic water filters, E. Annan, K. Kan-Dapaah, S. T. Azeko, K. Mustapha, J. Asare, M. G. Zebaze Kana, W. Soboyejo, Journal of Materials in Civil Engineering, 2016, Vol. 28, No 10, P. 04016105(1-11). | |
dc.relation.referencesen | 15. Tight ultrafiltration ceramic membrane for separation of dyes and mixed salts (both NaCl/Na2SO4) in textile wastewater treatment, X. Ma, P. Chen, M. Zhou, Z. Zhong, F. Zhang, W. Xing, Industrial & Engineering Chemistry Research, 2017, Vol. 56, P. 7070−7079. | |
dc.relation.referencesen | 16. Synthesis of titania–g-alumina multilayer nanomembranes on performance-improved alumina supports for wastewater treatment, M. Shayesteh, A. Samimi, M. S. Afarani, M. Khorram, Desalination and Water Treatment, 2015, Vol. 57, P. 1–8. | |
dc.relation.referencesen | 17. Ungur G., Hruza J. Modified polyurethane nanofibers as antibacterial filters for air and water purification, RSC Advances, 2017, Vol. 7, P. 49177–49187. | |
dc.relation.referencesen | 18. Printing ultrathin graphene oxide nanofiltration membranes for water purification, M. Fathizadeh, H. N. Tien, K. Khivantsev, J.-T. Chen, M. Yu., Journal of Materials Chemistry A, 2017, Vol. 5, No 39, P. 20860–20866. | |
dc.relation.referencesen | 19. Nanocomposite membranesfor water purification/ S. Hernández, M. Gui, D. Davenport, L. Ormsbee, D. Bhattacharyya, Conference: Kentucky Water Resources Annual Symposium At: Lexington, KY, 2015. | |
dc.relation.referencesen | 20. Kuntyi O. I. Electrochemistry and Morphology of Disperse Metals (ukr.), Lviv: Publ. House Lviv Polytechnic National University, 2008, 208 p. | |
dc.relation.referencesen | 21. Yavors’kyi V. T., Znak Z. O., Mnykh R. V. Influence of cavitation treatment on the physicochemical properties of calcium hydroxide, Materials Science, 2013, Vol. 49, No 3, P. 368–374. | |
dc.relation.referencesen | 22. Nosratinia F., Ghahremani H., Shirazian S. Preparation and characterization of nanoporous ceramic membranes for separation of water from ethanol, Desalination and Water Treatment, 2014, Vol. 54, P. 1–6. | |
dc.relation.referencesen | 23. A flexible, robust and antifouling asymmetric membrane based on ultra-long ceramic/polymeric fibers for high-efficiency separation of oil/water emulsions, K. Wang, W. Yiming, J. Saththasivam, Z. Liu, Nanoscale, 2017, No 26, P. 1–22. | |
dc.relation.referencesen | 24. Amphi-functional mesoporous silica nanoparticles for dye separation/ P. Shinde, S. S. Gupta, B. Singh, V. Polshettiwar, B. L. V. Prasad., Journal of Materials Chemistry A, 2017, No 28, P. 14914–14921. | |
dc.relation.referencesen | 25. Functionalizedmesoporoussilica: absorbentsforwaterpurification/ S. Nasreen, A. Urooj, U. Rafique, S. Ehrman// Desalination and water treatment, 2016, Vol. 57, P. 1–11. | |
dc.relation.referencesen | 26. Phosphoryl functionalized mesoporous silica for uranium adsorption, X. Guo, Y. Feng, L. Ma, D. Gao, J. Jing, J. Yu, H. Sun, H. Gong, Y. Zhang, Applied Surface Science, 2017, Vol. 402, P. 53–60. | |
dc.relation.referencesen | 27. Comparative study of graphene hydrogels and aerogels reveals the important role of buried water in pollutant adsorption, J. Ma, Y. Sun, M. Zhang, M. Yang, X. Gong, F. Yu, J. Zheng, Environmental Science & Technology, 2017, Vol. 51, No 21, P. 12283–12292. | |
dc.relation.referencesen | 28. Nyongesa F., Aduda B. Electrophoretic deposition of titanium dioxide thin films for photocatalytic water purification systems, Advances in Materials, 2017, Vol. 6, No 4, P. 31–37. | |
dc.relation.referencesen | 29. Porous ceramics based on hybrid inorganic tetrapodal networks for efficient photocatalysis and water purification, J. Gröttrup, F. Schütt, D. Smazna, O. Lupan, R. Adelung, Y. K. Mishra, Ceramics International, 2017, Vol. 43, P. 14915–14922. | |
dc.relation.referencesen | 30. Habba Y. G., Capochichi-Gnambodoe M., Leprince-Wang Y. Enhanced Photocatalytic Activity of Iron-Doped ZnO Nanowires for Water Purification, Applied Sciences, 2017, Vol. 7, P. 1185 (1–10). | |
dc.citation.journalTitle | Chemistry, Technology and Application of Substance | |
dc.citation.volume | 1 | |
dc.citation.issue | 1 | |
dc.citation.spage | 27 | |
dc.citation.epage | 37 | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry, Technology and Application of Substances. – 2018. – Vol. 1, No. 1
|