Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/44899
Full metadata record
DC FieldValueLanguage
dc.contributor.authorЛимарченко, О.
dc.contributor.authorНефьодов, О.
dc.contributor.authorLimarchenko, O.
dc.contributor.authorNefedov, A.
dc.date.accessioned2019-05-07T14:02:00Z-
dc.date.available2019-05-07T14:02:00Z-
dc.date.created2018-01-15
dc.date.issued2018-01-15
dc.identifier.citationLimarchenko O. Peculiarities of dynamics of the reservoir with a free–surface liquid on pendulum suspension with the moving suspension point / O. Limarchenko, A. Nefedov // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 1. — P. 41–47.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/44899-
dc.description.abstractРозглянуто задачу динамiки резервуара цилiндричної форми, частково заповненого рiдиною, на маятниковому пiдвiсi з рухомою точкою пiдвiсу. Задачу розглядають у нелiнiйнiй постановцi з метою визначення впливу маятникового пiдвiсу на частотнi характеристики i поведiнку системи в бiлярезонанснiй зонi. Аналiтично i чисельно дослiджено, що власнi частоти коливань суттєво змiнюються як для квазiтвердої ма- ятникової форми руху, так i особливо для частоти коливань рiдини. Чисельнi прикла- ди показали, що резонанснi властивостi системи для дорезонансного, зарезонансного i бiлярезонансного режимiв суттєво вiдрiзняються i для усiх випадкiв сильно прояв- ляється ефект амплiтудної модуляцiї.
dc.description.abstractA problem of dynamics of a reservoir of cylindrical shape, partially filled with liquid, on pendulum suspension with movable suspension point is under investigation. The problem is considered in nonlinear statement with the purpose of clarification of the effect of pendulum suspension on both frequency characteristics and the system behavior in the near-resonance zone. An analytical and numerical study shows that normal frequencies of oscillations have considerable changes for both quasi-rigid pendulum mode of motion and especially for the frequency of liquid sloshing modes. Numerical examples show that resonant properties of the system for below resonance, above resonance and near resonance modes are considerably different and the effect of amplitude modulation manifests strongly for all cases.
dc.format.extent41-47
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (5), 2018
dc.subjectколивання рiдини
dc.subjectрезервуар на маятниковому пiдвiсi
dc.subjectбiлярезо- нанснi режими руху
dc.subjectамплiтудна модуляцiя
dc.subjectliquid oscillations
dc.subjectreservoir on pendulum suspension
dc.subjectnear resonance modes of motion
dc.subjectamplitude modulation
dc.titlePeculiarities of dynamics of the reservoir with a free–surface liquid on pendulum suspension with the moving suspension point
dc.title.alternativeОсобливості динаміки резервуара з рідиною з вільною поверхнею на маятниковому підвісі з рухомою точкою підвісу
dc.typeArticle
dc.rights.holder© 2018 Lviv Polytechnic National University CMM IAPMM NASU
dc.rights.holder© 2018 Lviv Polytechnic National University CMM IAPMM NASU
dc.contributor.affiliationКиївський національний університет імені Тараса Шевченка
dc.contributor.affiliationTaras Shevchenko Kyiv National University
dc.format.pages7
dc.identifier.citationenLimarchenko O. Peculiarities of dynamics of the reservoir with a free–surface liquid on pendulum suspension with the moving suspension point / O. Limarchenko, A. Nefedov // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 1. — P. 41–47.
dc.relation.references[1] LimarchenkoO. S., YasinskiyV.V. Nonlinear dynamics of structures with liquid. National Technical University of Ukraine “KPI” (1997).
dc.relation.references[2] MikishevG.N., RabinovichB. I. Dynamics of rigid bodies with cavities partially filled by liquid. Mashinostroenie, Moscow (1968).
dc.relation.references[3] FaltinsenO.M., RognebakkeO.M., TimokhaA.N. Resonant three-dimensional nonlinear sloshing in a square-base basin. J. Fluid Mech. 487, 1–42 (2003).
dc.relation.references[4] Lukovskiy I.A. Introduction to nonlinear dynamics of a rigid body with cavities containing liquid. Naukova dumka, Kiev (1990).
dc.relation.references[5] FaltinsenO.M., RognebakkeO.M., TimokhaA.N. Transient and steady-state amplitudes of resonant threedimensional sloshing in a square base tank with a finite fluid depth. Physics of Fluids. 18 (1), 012103-1–012103-14 (2006).
dc.relation.references[6] PalP. Sloshing of liquid in partially filled container – an experimental study. International Journal of Recent Trends in Engineering. 1 (6), 1–5 (2009).
dc.relation.references[7] ZhangCh., LiY., MengQ. Fully nonlinear analysis of second order sloshing resonance in a three-dimensional tank. Computers & Fluids. 116, 88–104 (2015).
dc.relation.references[8] LymarchenkoO. S., SemenovychK.O. Energy redistribution between the reservoir and liquid with free surface for angular motions of the system. Journal of Mathematical Sciences. 222 (3), 296–303 (2017).
dc.relation.references[9] ZhaoaW., Yanga J., Hu Z, Tao L. Coupled analysis of nonlinear sloshing and ship motions. Applied Ocean Research. 47, 85–97 (2014).
dc.relation.referencesen[1] LimarchenkoO. S., YasinskiyV.V. Nonlinear dynamics of structures with liquid. National Technical University of Ukraine "KPI" (1997).
dc.relation.referencesen[2] MikishevG.N., RabinovichB. I. Dynamics of rigid bodies with cavities partially filled by liquid. Mashinostroenie, Moscow (1968).
dc.relation.referencesen[3] FaltinsenO.M., RognebakkeO.M., TimokhaA.N. Resonant three-dimensional nonlinear sloshing in a square-base basin. J. Fluid Mech. 487, 1–42 (2003).
dc.relation.referencesen[4] Lukovskiy I.A. Introduction to nonlinear dynamics of a rigid body with cavities containing liquid. Naukova dumka, Kiev (1990).
dc.relation.referencesen[5] FaltinsenO.M., RognebakkeO.M., TimokhaA.N. Transient and steady-state amplitudes of resonant threedimensional sloshing in a square base tank with a finite fluid depth. Physics of Fluids. 18 (1), 012103-1–012103-14 (2006).
dc.relation.referencesen[6] PalP. Sloshing of liquid in partially filled container – an experimental study. International Journal of Recent Trends in Engineering. 1 (6), 1–5 (2009).
dc.relation.referencesen[7] ZhangCh., LiY., MengQ. Fully nonlinear analysis of second order sloshing resonance in a three-dimensional tank. Computers & Fluids. 116, 88–104 (2015).
dc.relation.referencesen[8] LymarchenkoO. S., SemenovychK.O. Energy redistribution between the reservoir and liquid with free surface for angular motions of the system. Journal of Mathematical Sciences. 222 (3), 296–303 (2017).
dc.relation.referencesen[9] ZhaoaW., Yanga J., Hu Z, Tao L. Coupled analysis of nonlinear sloshing and ship motions. Applied Ocean Research. 47, 85–97 (2014).
dc.citation.journalTitleMathematical Modeling and Computing
dc.citation.volume5
dc.citation.issue1
dc.citation.spage41
dc.citation.epage47
dc.coverage.placenameLviv
dc.subject.udc532.595
Appears in Collections:Mathematical Modeling And Computing. – 2018. – Vol. 5, No. 1

Files in This Item:
File Description SizeFormat 
2018v5n1_Limarchenko_O-Peculiarities_of_dynamics_41-47.pdf1.06 MBAdobe PDFView/Open
2018v5n1_Limarchenko_O-Peculiarities_of_dynamics_41-47__COVER.png403.41 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.