DC Field | Value | Language |
dc.contributor.author | Лимарченко, О. | |
dc.contributor.author | Нефьодов, О. | |
dc.contributor.author | Limarchenko, O. | |
dc.contributor.author | Nefedov, A. | |
dc.date.accessioned | 2019-05-07T14:02:00Z | - |
dc.date.available | 2019-05-07T14:02:00Z | - |
dc.date.created | 2018-01-15 | |
dc.date.issued | 2018-01-15 | |
dc.identifier.citation | Limarchenko O. Peculiarities of dynamics of the reservoir with a free–surface liquid on pendulum suspension with the moving suspension point / O. Limarchenko, A. Nefedov // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 1. — P. 41–47. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/44899 | - |
dc.description.abstract | Розглянуто задачу динамiки резервуара цилiндричної форми, частково заповненого
рiдиною, на маятниковому пiдвiсi з рухомою точкою пiдвiсу. Задачу розглядають у
нелiнiйнiй постановцi з метою визначення впливу маятникового пiдвiсу на частотнi
характеристики i поведiнку системи в бiлярезонанснiй зонi. Аналiтично i чисельно
дослiджено, що власнi частоти коливань суттєво змiнюються як для квазiтвердої ма-
ятникової форми руху, так i особливо для частоти коливань рiдини. Чисельнi прикла-
ди показали, що резонанснi властивостi системи для дорезонансного, зарезонансного
i бiлярезонансного режимiв суттєво вiдрiзняються i для усiх випадкiв сильно прояв-
ляється ефект амплiтудної модуляцiї. | |
dc.description.abstract | A problem of dynamics of a reservoir of cylindrical shape, partially filled with liquid, on
pendulum suspension with movable suspension point is under investigation. The problem
is considered in nonlinear statement with the purpose of clarification of the effect of
pendulum suspension on both frequency characteristics and the system behavior in the
near-resonance zone. An analytical and numerical study shows that normal frequencies
of oscillations have considerable changes for both quasi-rigid pendulum mode of motion
and especially for the frequency of liquid sloshing modes. Numerical examples show that
resonant properties of the system for below resonance, above resonance and near resonance
modes are considerably different and the effect of amplitude modulation manifests
strongly for all cases. | |
dc.format.extent | 41-47 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 1 (5), 2018 | |
dc.subject | коливання рiдини | |
dc.subject | резервуар на маятниковому пiдвiсi | |
dc.subject | бiлярезо- нанснi режими руху | |
dc.subject | амплiтудна модуляцiя | |
dc.subject | liquid oscillations | |
dc.subject | reservoir on pendulum suspension | |
dc.subject | near resonance modes of motion | |
dc.subject | amplitude modulation | |
dc.title | Peculiarities of dynamics of the reservoir with a free–surface liquid on pendulum suspension with the moving suspension point | |
dc.title.alternative | Особливості динаміки резервуара з рідиною з вільною поверхнею на маятниковому підвісі з рухомою точкою підвісу | |
dc.type | Article | |
dc.rights.holder | © 2018 Lviv Polytechnic National University CMM IAPMM NASU | |
dc.rights.holder | © 2018 Lviv Polytechnic National University CMM IAPMM NASU | |
dc.contributor.affiliation | Київський національний університет імені Тараса Шевченка | |
dc.contributor.affiliation | Taras Shevchenko Kyiv National University | |
dc.format.pages | 7 | |
dc.identifier.citationen | Limarchenko O. Peculiarities of dynamics of the reservoir with a free–surface liquid on pendulum suspension with the moving suspension point / O. Limarchenko, A. Nefedov // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 1. — P. 41–47. | |
dc.relation.references | [1] LimarchenkoO. S., YasinskiyV.V. Nonlinear dynamics of structures with liquid. National Technical University of Ukraine “KPI” (1997). | |
dc.relation.references | [2] MikishevG.N., RabinovichB. I. Dynamics of rigid bodies with cavities partially filled by liquid. Mashinostroenie, Moscow (1968). | |
dc.relation.references | [3] FaltinsenO.M., RognebakkeO.M., TimokhaA.N. Resonant three-dimensional nonlinear sloshing in a square-base basin. J. Fluid Mech. 487, 1–42 (2003). | |
dc.relation.references | [4] Lukovskiy I.A. Introduction to nonlinear dynamics of a rigid body with cavities containing liquid. Naukova dumka, Kiev (1990). | |
dc.relation.references | [5] FaltinsenO.M., RognebakkeO.M., TimokhaA.N. Transient and steady-state amplitudes of resonant threedimensional sloshing in a square base tank with a finite fluid depth. Physics of Fluids. 18 (1), 012103-1–012103-14 (2006). | |
dc.relation.references | [6] PalP. Sloshing of liquid in partially filled container – an experimental study. International Journal of Recent Trends in Engineering. 1 (6), 1–5 (2009). | |
dc.relation.references | [7] ZhangCh., LiY., MengQ. Fully nonlinear analysis of second order sloshing resonance in a three-dimensional tank. Computers & Fluids. 116, 88–104 (2015). | |
dc.relation.references | [8] LymarchenkoO. S., SemenovychK.O. Energy redistribution between the reservoir and liquid with free surface for angular motions of the system. Journal of Mathematical Sciences. 222 (3), 296–303 (2017). | |
dc.relation.references | [9] ZhaoaW., Yanga J., Hu Z, Tao L. Coupled analysis of nonlinear sloshing and ship motions. Applied Ocean Research. 47, 85–97 (2014). | |
dc.relation.referencesen | [1] LimarchenkoO. S., YasinskiyV.V. Nonlinear dynamics of structures with liquid. National Technical University of Ukraine "KPI" (1997). | |
dc.relation.referencesen | [2] MikishevG.N., RabinovichB. I. Dynamics of rigid bodies with cavities partially filled by liquid. Mashinostroenie, Moscow (1968). | |
dc.relation.referencesen | [3] FaltinsenO.M., RognebakkeO.M., TimokhaA.N. Resonant three-dimensional nonlinear sloshing in a square-base basin. J. Fluid Mech. 487, 1–42 (2003). | |
dc.relation.referencesen | [4] Lukovskiy I.A. Introduction to nonlinear dynamics of a rigid body with cavities containing liquid. Naukova dumka, Kiev (1990). | |
dc.relation.referencesen | [5] FaltinsenO.M., RognebakkeO.M., TimokhaA.N. Transient and steady-state amplitudes of resonant threedimensional sloshing in a square base tank with a finite fluid depth. Physics of Fluids. 18 (1), 012103-1–012103-14 (2006). | |
dc.relation.referencesen | [6] PalP. Sloshing of liquid in partially filled container – an experimental study. International Journal of Recent Trends in Engineering. 1 (6), 1–5 (2009). | |
dc.relation.referencesen | [7] ZhangCh., LiY., MengQ. Fully nonlinear analysis of second order sloshing resonance in a three-dimensional tank. Computers & Fluids. 116, 88–104 (2015). | |
dc.relation.referencesen | [8] LymarchenkoO. S., SemenovychK.O. Energy redistribution between the reservoir and liquid with free surface for angular motions of the system. Journal of Mathematical Sciences. 222 (3), 296–303 (2017). | |
dc.relation.referencesen | [9] ZhaoaW., Yanga J., Hu Z, Tao L. Coupled analysis of nonlinear sloshing and ship motions. Applied Ocean Research. 47, 85–97 (2014). | |
dc.citation.journalTitle | Mathematical Modeling and Computing | |
dc.citation.volume | 5 | |
dc.citation.issue | 1 | |
dc.citation.spage | 41 | |
dc.citation.epage | 47 | |
dc.coverage.placename | Lviv | |
dc.subject.udc | 532.595 | |
Appears in Collections: | Mathematical Modeling And Computing. – 2018. – Vol. 5, No. 1
|