Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/42389
Title: Amplitude equations for activator-inhibitor system with superdiffusion
Other Titles: Амплiтуднi рiвняння для системи типу активатор-iнгiбiтор iз супердифузiєю
Authors: Prytula, Z.
Affiliation: Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
Bibliographic description (Ukraine): Prytula Z. Amplitude equations for activator-inhibitor system with superdiffusion / Z. Prytula // Mathematical Modeling and Сomputing. – 2016. – Volume 3, number 2. – Р. 191–198. – Bibliography: 23 titles.
Journal/Collection: Mathematical Modeling and Сomputing
Issue Date: 2016
Country (code): UA
UDC: 517.519+517.96
Keywords: reaction-diffusion system
cubic nonlinearity
fractional operator
superdiffusion
система реакцiї-дифузiї
кубiчна нелiнiйнiсть
дробовий оператор
супердифузiя
Number of pages: 191–198
Abstract: The generalized activator-inhibitor model with cubic nonlinearity, in which the classical Laplacian is replaced by fractional operator has been studied. The fractional operator reflects the nonlocal behavior of superdiffusion. A spatially homogeneous, time independent solution has been found and its linear stability was studied. We have also performed a weakly nonlinear analysis and obtained a system of amplitude equations that are the basis for analysing pattern formation as well as parameter regimes for which various steady-state patterns would exist. Дослiджено узагальнену модель типу активатор-iнгiбiтор iз кубiчною нелiнiйнiстю, в якiй класичний оператор Лапласа замiнено дробовим аналогом. Дробовий оператор вiдображує нелокальну поведiнку супердифузiї. Знайдено просторово-однорiдний стацiонарний розв’язок та вивчено його лiнiйну стiйкiсть. Проведено також слабконелiнiйний аналiз та отримано систему амплiтудних рiвнянь. Отриманi рiвняння дають можливiсть аналiзувати типи структур, якi виникають у розглядуванiй реакцiйнодифузiйнiй системi.
URI: https://ena.lpnu.ua/handle/ntb/42389
References (Ukraine): [1] Henry B. I., Wearne S. L. Existence of Turing instabilities in a two-species fractional reaction-diffusion system. SIAM J. Appl. Math. 62, n. 3, 870–887 (2002). [2] Datsko B., Luchko Y., Gafiychuk V. Pattern formation in fractional reaction-diffusion systems with multiple homogeneous states. Int. J. Bifurcation Chaos. 22, 1250087 (2012). [3] Datsko B., Gafiychuk V., Podlubny I. Solitary travelling auto-waves in fractional reaction–diffusion systems. Communications in Nonlinear Science and Numerical Simulation. 23 (1), 378–387 (2015). [4] Nec Y., Ward M. J. The stability and slow dynamics of two-spike patterns for a class of reaction-diffusion system. Math. Model. Nat. Phenom. 8 (5), 206–232 (2013). [5] Fomin S., Chugunov V., Hashida T. Mathematical modeling of anomalous diffusion in porous media. Fract. Different. Calc. 1, n. 1, 1–28 (2011). [6] Farago J., Meyer H., Semenov A. N. Anomalous Diffusion of a Polymer Chain in an Unentangled Melt. Phys. Rev. Lett. 107 (17), 178301 (2011). [7] Carcione J. M., Sanchez-Sesma F. J., Luzon F., Gavilan J. J. P. Theory and simulation of time-fractional fluid diffusion in porous media. J. Phys. A: Math. Theor. 46, 345501 (2013). [8] Aar˜ao Reis F. D. A., di Caprio D. Crossover from anomalous to normal diffusion in porous media. Phys. Rev. E. 89, 062126 (2014). [9] Garra R. Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks. Phys. Rev. E. 84, 036605 (2011). [10] Roubinet D., de Dreuzy J. R., Tartakovsky D. M. Particle-tracking simulations of anomalous transport in hierarchically fractured rocks. Computers & Geosciences. 50, 52–58 (2013). [11] Carreras B. A., Lynch V. E., Zaslavsky G. M. Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys. Plasmas. 8 (12), 5096–5103 (2001). [12] Priego M., Garcia O. E., Naulin V., Rasmussen J. J. Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence. Phys. Plasmas. 12 (6), 062312 (2005). [13] Krivolapov Y., Levi L., Fishman Sh., Segev M., Wilkinson M. Super-diffusion in optical realizations of Anderson localization. New J. Phys. 14, 043047 (2012). [14] Barkai E., Jung Y., Silbey R. Theory of single-molucule spectroskopy: beyond the ensemble average. Annu. Rev. Phys. Chem. 55, 457–507 (2004). [15] Golovin A. A., Matkowsky B. J., Volpert V. A. Turing pattern formation in the Brusselator model with superdiffusion. J. Appl. Math. 69, n. 1, 251–272 (2008). [16] Zhang L., Tian C. Turing pattern dynamics in an activator-inhibitor system with superdiffusion. Phys. Rev. E. 90, 062915 (2014). [17] Dufiet V., Boissonade J. Dynamics of Turing pattern monolayers close to onset. Phys. Rev. E. 53, 4883 (1996). [18] Prytula Z. Mathematical modelling of nonlinear dynamics in activator-inhibitor systems with superdiffusion. The Bulletin of Lviv Polytechnic National University titled “Computer Sciences and Information Technologies”. 826, 230–237 (2015). [19] Samko S. G., Kilbas A. A., Marichev O. I. Fractional integrals and derivatives, theory and applications. Gordon and Breach, Amsterdam (1993). [20] Uchaikin V. Method of fractional derivatives. Artishok-Press (2008), (in Russian). [21] Petr´aˇs I. Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation. Springer (2011). [22] Podlubny I. Fractional Differential Equations. San Diego: Acad. Press (1999). [23] Walgraef D. Spatio-Temporal Pattern Formation. Springer, New York (1997)
Content type: Article
Appears in Collections:Mathematical Modeling And Computing. – 2016. – Vol. 3, No. 2

Files in This Item:
File Description SizeFormat 
010-83-90.pdf230.9 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.