Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/42033
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConrad S. M. Mueller
dc.date.accessioned2018-06-18T14:00:27Z-
dc.date.available2018-06-18T14:00:27Z-
dc.date.created2017-02-01
dc.date.issued2017-02-01
dc.identifier.citationConrad S. M. Mueller A new computational model for real gains in big data processing power / Conrad S. M. Mueller // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 2. — No 1. — P. 11–21.
dc.identifier.issn2524-0382
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/42033-
dc.description.abstractBig data and high performance computing are seen by many as important tools that will be used to advance science. However, the computational power needed for this promise to materialize far exceeds what is currently available. This paper argues that the von Neumann computational model, the only model in everyday use, has inherent weaknesses that will prevent computers from achieving the envisaged performance levels. First, these weaknesses are explored and the properties of a computational model are identified that would be required to overcome these weaknesses. The performance benefits of implementing a model with these properties are discussed, making a case that a computational model with these properties has the potential to address the needs of high performance computing. Next, the paper presents a proposed computational model and argues that it is a viable alternative to the von Neumann model. The paper gives a simplified outline of an architecture and programming language that express the proposed computational model. The main feature of this computational model is that it processes variables as they become defined. These variables can be processed in any order and simultaneously, avoiding bottlenecks and enabling high levels of parallelism. Finally, the computational model is evaluated against the properties identified as desirable, showing that it is possible to design an architecture and programming language that do not have the weaknesses of the currently dominant von Neumann model. The paper concludes that the weaknesses which limit the performance of current computers can be overcome by exploring alternative computational models, architectures and programming languages, rather than by working towards incremental improvements to the existing dominant model.
dc.format.extent11-21
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofAdvances in Cyber-Physical Systems, 1 (2), 2017
dc.relation.urihttp://cra.org/ccc/docs/init/21stcenturyarchitectu
dc.relation.urihttp://cra.org/ccc/docs/init/21stcenturyarchitecturewhitepaper.pdf
dc.relation.urihttp://doi.acm.org/10.1145/2490301.2451165
dc.relation.urihttp://doi.acm.org/10.1145/977091.977115
dc.relation.urihttp://doi.acm.org/10.1145/2234336.2234339
dc.subjectBig data
dc.subjectComputer architecture
dc.subjectComputational models
dc.subjectHigh-performance computing
dc.subjectProgramming language
dc.titleA new computational model for real gains in big data processing power
dc.typeArticle
dc.rights.holder© Національний університет „Львівська політехніка“, 2017
dc.rights.holder© Conrad S. M. Mueller, 2017
dc.contributor.affiliationComputer Science Department of the University of the Witwatersrand
dc.format.pages11
dc.identifier.citationenConrad S. M. Mueller A new computational model for real gains in big data processing power / Conrad S. M. Mueller // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 2. — No 1. — P. 11–21.
dc.relation.references[1] M. Oskin, J. Torrellas, C. Das, J. Davis, S. Dwarkadas, L. Eeckhout, B. Feiereisen, D. Jimenez, M. Hill, M. Kim, J. Larus, M. Martonosi, O. Mutlu, K. Olukotun, A. Putnam, T. Sherwood, J. Smith, D. Wood, C. Zilles, “Workshop on Advancing Computer Architecture Research (ACAR-II) Laying a New Foundation for IT: Computer Architecture for 2025 and Beyond”, Computing Research Association, Seattle, Washington, 2010.
dc.relation.references[2] A. V. Aho, M. S. Sethi, J. D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986. ISBN 0-201-10088-6
dc.relation.references[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. P. Patterson, W. L. Plishker, J. Shalf, S.W. Wiliams and K. A. Yelick. “The Landscape of Parallel Computing Research: A View from Berkeley”. Tech. rep., Electical Engineering and Computer Sciences, University of California at Berkeley, 2006. URL www://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.
dc.relation.references[4] A Community White Paper. “21st Century Computer Architecture”, http://cra.org/ccc/docs/init/21stcenturyarchitectu rewhitepaper.pdf, 2012. URL http://cra.org/ccc/docs/init/21stcenturyarchitecturewhitepaper.pdf.
dc.relation.references[5] T.P.I.T.A.C. (PITAC). “Computational Science: Ensuring America’s Competitiveness”. May 2005.
dc.relation.references[6] J. Backus. “Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its Algebra of Programs”. Communications of the ACM, vol. 21, no. 8,pp. 613–641, 1977.
dc.relation.references[7] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kauffman, 4th edition edn., 2007.
dc.relation.references[8] M. D. Hill. “Research Directions for 21st Century Computer Systems: Asplos 2013 Panel”. SIGARCH Comput. Archit. News, vol. 41, no. 1, pp. 459–460, Mar. 2013. ISSN 0163-5964. 10.1145/2490301.2451165. URL http://doi.acm.org/10.1145/2490301.2451165.
dc.relation.references[9] S. A. McKee. “Reflections on the Memory Wall”. In Proceedings of the 1st Conference on Computing Frontiers, CF ’04, pp. 162–. ACM, New York, NY, USA, 2004. ISBN 1-58113-741-9. 10.1145/977091.977115. URL http://doi.acm.org/10.1145/977091.977115.
dc.relation.references[10] C. Mueller. “Element-Based Computational Model”. International Journal of Modern Education and Computer Science (IJMECS), vol. 4, no. 1, pp. 1–11, February 2012.
dc.relation.references[11] C. Mueller. “Axiom based architecture”. SIGARCH Comput. Archit. News, vol. 40, no. 2, pp. 10–17, May 2012. ISSN 0163-5964. 10.1145/2234336.2234339. URL http://doi.acm.org/10.1145/2234336.2234339.
dc.relation.references[12] P. Mukala, J. Kinyua and C. Muller. A Theoretical Evaluation of AriDeM using Matrix Multiplication, 2011 International Conference on Communication Engineering and Networks, ISSN: 2010-460X
dc.relation.referencesen[1] M. Oskin, J. Torrellas, C. Das, J. Davis, S. Dwarkadas, L. Eeckhout, B. Feiereisen, D. Jimenez, M. Hill, M. Kim, J. Larus, M. Martonosi, O. Mutlu, K. Olukotun, A. Putnam, T. Sherwood, J. Smith, D. Wood, C. Zilles, "Workshop on Advancing Computer Architecture Research (ACAR-II) Laying a New Foundation for IT: Computer Architecture for 2025 and Beyond", Computing Research Association, Seattle, Washington, 2010.
dc.relation.referencesen[2] A. V. Aho, M. S. Sethi, J. D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986. ISBN 0-201-10088-6
dc.relation.referencesen[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. P. Patterson, W. L. Plishker, J. Shalf, S.W. Wiliams and K. A. Yelick. "The Landscape of Parallel Computing Research: A View from Berkeley". Tech. rep., Electical Engineering and Computer Sciences, University of California at Berkeley, 2006. URL www://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.
dc.relation.referencesen[4] A Community White Paper. "21st Century Computer Architecture", http://cra.org/ccc/docs/init/21stcenturyarchitectu rewhitepaper.pdf, 2012. URL http://cra.org/ccc/docs/init/21stcenturyarchitecturewhitepaper.pdf.
dc.relation.referencesen[5] T.P.I.T.A.C. (PITAC). "Computational Science: Ensuring America’s Competitiveness". May 2005.
dc.relation.referencesen[6] J. Backus. "Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its Algebra of Programs". Communications of the ACM, vol. 21, no. 8,pp. 613–641, 1977.
dc.relation.referencesen[7] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kauffman, 4th edition edn., 2007.
dc.relation.referencesen[8] M. D. Hill. "Research Directions for 21st Century Computer Systems: Asplos 2013 Panel". SIGARCH Comput. Archit. News, vol. 41, no. 1, pp. 459–460, Mar. 2013. ISSN 0163-5964. 10.1145/2490301.2451165. URL http://doi.acm.org/10.1145/2490301.2451165.
dc.relation.referencesen[9] S. A. McKee. "Reflections on the Memory Wall". In Proceedings of the 1st Conference on Computing Frontiers, CF ’04, pp. 162–. ACM, New York, NY, USA, 2004. ISBN 1-58113-741-9. 10.1145/977091.977115. URL http://doi.acm.org/10.1145/977091.977115.
dc.relation.referencesen[10] C. Mueller. "Element-Based Computational Model". International Journal of Modern Education and Computer Science (IJMECS), vol. 4, no. 1, pp. 1–11, February 2012.
dc.relation.referencesen[11] C. Mueller. "Axiom based architecture". SIGARCH Comput. Archit. News, vol. 40, no. 2, pp. 10–17, May 2012. ISSN 0163-5964. 10.1145/2234336.2234339. URL http://doi.acm.org/10.1145/2234336.2234339.
dc.relation.referencesen[12] P. Mukala, J. Kinyua and C. Muller. A Theoretical Evaluation of AriDeM using Matrix Multiplication, 2011 International Conference on Communication Engineering and Networks, ISSN: 2010-460X
dc.citation.volume2
dc.citation.issue1
dc.citation.spage11
dc.citation.epage21
dc.coverage.placenameLviv
Appears in Collections:Advances In Cyber-Physical Systems. – 2017. – Vol. 2, No. 1

Files in This Item:
File Description SizeFormat 
2017v2n1_Conrad_S_M_Mueller-A_new_computational_11-21.pdf5.22 MBAdobe PDFView/Open
2017v2n1_Conrad_S_M_Mueller-A_new_computational_11-21__COVER.png557.42 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.