DC Field | Value | Language |
dc.contributor.author | Conrad S. M. Mueller | |
dc.date.accessioned | 2018-06-18T14:00:27Z | - |
dc.date.available | 2018-06-18T14:00:27Z | - |
dc.date.created | 2017-02-01 | |
dc.date.issued | 2017-02-01 | |
dc.identifier.citation | Conrad S. M. Mueller A new computational model for real gains in big data processing power / Conrad S. M. Mueller // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 2. — No 1. — P. 11–21. | |
dc.identifier.issn | 2524-0382 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/42033 | - |
dc.description.abstract | Big data and high performance computing are
seen by many as important tools that will be used to
advance science. However, the computational power needed
for this promise to materialize far exceeds what is currently
available. This paper argues that the von Neumann
computational model, the only model in everyday use, has
inherent weaknesses that will prevent computers from
achieving the envisaged performance levels. First, these
weaknesses are explored and the properties of a
computational model are identified that would be required
to overcome these weaknesses. The performance benefits of
implementing a model with these properties are discussed,
making a case that a computational model with these
properties has the potential to address the needs of high
performance computing. Next, the paper presents a
proposed computational model and argues that it is a viable
alternative to the von Neumann model. The paper gives a
simplified outline of an architecture and programming
language that express the proposed computational model.
The main feature of this computational model is that it
processes variables as they become defined. These variables
can be processed in any order and simultaneously, avoiding
bottlenecks and enabling high levels of parallelism. Finally,
the computational model is evaluated against the properties
identified as desirable, showing that it is possible to design
an architecture and programming language that do not
have the weaknesses of the currently dominant von
Neumann model. The paper concludes that the weaknesses
which limit the performance of current computers can be
overcome by exploring alternative computational models,
architectures and programming languages, rather than by
working towards incremental improvements to the existing
dominant model. | |
dc.format.extent | 11-21 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Advances in Cyber-Physical Systems, 1 (2), 2017 | |
dc.relation.uri | http://cra.org/ccc/docs/init/21stcenturyarchitectu | |
dc.relation.uri | http://cra.org/ccc/docs/init/21stcenturyarchitecturewhitepaper.pdf | |
dc.relation.uri | http://doi.acm.org/10.1145/2490301.2451165 | |
dc.relation.uri | http://doi.acm.org/10.1145/977091.977115 | |
dc.relation.uri | http://doi.acm.org/10.1145/2234336.2234339 | |
dc.subject | Big data | |
dc.subject | Computer architecture | |
dc.subject | Computational models | |
dc.subject | High-performance computing | |
dc.subject | Programming language | |
dc.title | A new computational model for real gains in big data processing power | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2017 | |
dc.rights.holder | © Conrad S. M. Mueller, 2017 | |
dc.contributor.affiliation | Computer Science Department of the University of the Witwatersrand | |
dc.format.pages | 11 | |
dc.identifier.citationen | Conrad S. M. Mueller A new computational model for real gains in big data processing power / Conrad S. M. Mueller // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 2. — No 1. — P. 11–21. | |
dc.relation.references | [1] M. Oskin, J. Torrellas, C. Das, J. Davis, S. Dwarkadas, L. Eeckhout, B. Feiereisen, D. Jimenez, M. Hill, M. Kim, J. Larus, M. Martonosi, O. Mutlu, K. Olukotun, A. Putnam, T. Sherwood, J. Smith, D. Wood, C. Zilles, “Workshop on Advancing Computer Architecture Research (ACAR-II) Laying a New Foundation for IT: Computer Architecture for 2025 and Beyond”, Computing Research Association, Seattle, Washington, 2010. | |
dc.relation.references | [2] A. V. Aho, M. S. Sethi, J. D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986. ISBN 0-201-10088-6 | |
dc.relation.references | [3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. P. Patterson, W. L. Plishker, J. Shalf, S.W. Wiliams and K. A. Yelick. “The Landscape of Parallel Computing Research: A View from Berkeley”. Tech. rep., Electical Engineering and Computer Sciences, University of California at Berkeley, 2006. URL www://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html. | |
dc.relation.references | [4] A Community White Paper. “21st Century Computer Architecture”, http://cra.org/ccc/docs/init/21stcenturyarchitectu rewhitepaper.pdf, 2012. URL http://cra.org/ccc/docs/init/21stcenturyarchitecturewhitepaper.pdf. | |
dc.relation.references | [5] T.P.I.T.A.C. (PITAC). “Computational Science: Ensuring America’s Competitiveness”. May 2005. | |
dc.relation.references | [6] J. Backus. “Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its Algebra of Programs”. Communications of the ACM, vol. 21, no. 8,pp. 613–641, 1977. | |
dc.relation.references | [7] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kauffman, 4th edition edn., 2007. | |
dc.relation.references | [8] M. D. Hill. “Research Directions for 21st Century Computer Systems: Asplos 2013 Panel”. SIGARCH Comput. Archit. News, vol. 41, no. 1, pp. 459–460, Mar. 2013. ISSN 0163-5964. 10.1145/2490301.2451165. URL http://doi.acm.org/10.1145/2490301.2451165. | |
dc.relation.references | [9] S. A. McKee. “Reflections on the Memory Wall”. In Proceedings of the 1st Conference on Computing Frontiers, CF ’04, pp. 162–. ACM, New York, NY, USA, 2004. ISBN 1-58113-741-9. 10.1145/977091.977115. URL http://doi.acm.org/10.1145/977091.977115. | |
dc.relation.references | [10] C. Mueller. “Element-Based Computational Model”. International Journal of Modern Education and Computer Science (IJMECS), vol. 4, no. 1, pp. 1–11, February 2012. | |
dc.relation.references | [11] C. Mueller. “Axiom based architecture”. SIGARCH Comput. Archit. News, vol. 40, no. 2, pp. 10–17, May 2012. ISSN 0163-5964. 10.1145/2234336.2234339. URL http://doi.acm.org/10.1145/2234336.2234339. | |
dc.relation.references | [12] P. Mukala, J. Kinyua and C. Muller. A Theoretical Evaluation of AriDeM using Matrix Multiplication, 2011 International Conference on Communication Engineering and Networks, ISSN: 2010-460X | |
dc.relation.referencesen | [1] M. Oskin, J. Torrellas, C. Das, J. Davis, S. Dwarkadas, L. Eeckhout, B. Feiereisen, D. Jimenez, M. Hill, M. Kim, J. Larus, M. Martonosi, O. Mutlu, K. Olukotun, A. Putnam, T. Sherwood, J. Smith, D. Wood, C. Zilles, "Workshop on Advancing Computer Architecture Research (ACAR-II) Laying a New Foundation for IT: Computer Architecture for 2025 and Beyond", Computing Research Association, Seattle, Washington, 2010. | |
dc.relation.referencesen | [2] A. V. Aho, M. S. Sethi, J. D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986. ISBN 0-201-10088-6 | |
dc.relation.referencesen | [3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. P. Patterson, W. L. Plishker, J. Shalf, S.W. Wiliams and K. A. Yelick. "The Landscape of Parallel Computing Research: A View from Berkeley". Tech. rep., Electical Engineering and Computer Sciences, University of California at Berkeley, 2006. URL www://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html. | |
dc.relation.referencesen | [4] A Community White Paper. "21st Century Computer Architecture", http://cra.org/ccc/docs/init/21stcenturyarchitectu rewhitepaper.pdf, 2012. URL http://cra.org/ccc/docs/init/21stcenturyarchitecturewhitepaper.pdf. | |
dc.relation.referencesen | [5] T.P.I.T.A.C. (PITAC). "Computational Science: Ensuring America’s Competitiveness". May 2005. | |
dc.relation.referencesen | [6] J. Backus. "Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its Algebra of Programs". Communications of the ACM, vol. 21, no. 8,pp. 613–641, 1977. | |
dc.relation.referencesen | [7] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kauffman, 4th edition edn., 2007. | |
dc.relation.referencesen | [8] M. D. Hill. "Research Directions for 21st Century Computer Systems: Asplos 2013 Panel". SIGARCH Comput. Archit. News, vol. 41, no. 1, pp. 459–460, Mar. 2013. ISSN 0163-5964. 10.1145/2490301.2451165. URL http://doi.acm.org/10.1145/2490301.2451165. | |
dc.relation.referencesen | [9] S. A. McKee. "Reflections on the Memory Wall". In Proceedings of the 1st Conference on Computing Frontiers, CF ’04, pp. 162–. ACM, New York, NY, USA, 2004. ISBN 1-58113-741-9. 10.1145/977091.977115. URL http://doi.acm.org/10.1145/977091.977115. | |
dc.relation.referencesen | [10] C. Mueller. "Element-Based Computational Model". International Journal of Modern Education and Computer Science (IJMECS), vol. 4, no. 1, pp. 1–11, February 2012. | |
dc.relation.referencesen | [11] C. Mueller. "Axiom based architecture". SIGARCH Comput. Archit. News, vol. 40, no. 2, pp. 10–17, May 2012. ISSN 0163-5964. 10.1145/2234336.2234339. URL http://doi.acm.org/10.1145/2234336.2234339. | |
dc.relation.referencesen | [12] P. Mukala, J. Kinyua and C. Muller. A Theoretical Evaluation of AriDeM using Matrix Multiplication, 2011 International Conference on Communication Engineering and Networks, ISSN: 2010-460X | |
dc.citation.volume | 2 | |
dc.citation.issue | 1 | |
dc.citation.spage | 11 | |
dc.citation.epage | 21 | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Advances In Cyber-Physical Systems. – 2017. – Vol. 2, No. 1
|