
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 2, No. 1, 2017

A NEW COMPUTATIONAL MODEL FOR REAL GAINS
IN BIG DATA PROCESSING POWER

Conrad S. M. Mueller

Computer Science Department of the University of the Witwatersrand, Johannesburg, 2050 South Africa
Author e-mail: cmueller@acm.org

Submitted on 25.09.2017

 Conrad S. M. Mueller, 2017

Abstract: Big data and high performance computing are

seen by many as important tools that will be used to
advance science. However, the computational power needed
for this promise to materialize far exceeds what is currently
available. This paper argues that the von Neumann
computational model, the only model in everyday use, has
inherent weaknesses that will prevent computers from
achieving the envisaged performance levels. First, these
weaknesses are explored and the properties of a
computational model are identified that would be required
to overcome these weaknesses. The performance benefits of
implementing a model with these properties are discussed,
making a case that a computational model with these
properties has the potential to address the needs of high
performance computing. Next, the paper presents a
proposed computational model and argues that it is a viable
alternative to the von Neumann model. The paper gives a
simplified outline of an architecture and programming
language that express the proposed computational model.
The main feature of this computational model is that it
processes variables as they become defined. These variables
can be processed in any order and simultaneously, avoiding
bottlenecks and enabling high levels of parallelism. Finally,
the computational model is evaluated against the properties
identified as desirable, showing that it is possible to design
an architecture and programming language that do not
have the weaknesses of the currently dominant von
Neumann model. The paper concludes that the weaknesses
which limit the performance of current computers can be
overcome by exploring alternative computational models,
architectures and programming languages, rather than by
working towards incremental improvements to the existing
dominant model.

Index Terms: Big data, Computer architecture,
Computational models, High-performance computing,
Programming language.

INTRODUCTION

I recently attended a workshop discussing the
computational needs of the European Organization for
Nuclear Research (CERN) and the Square Kilometer
Array (SKA) for large, data-intensive computations.
These needs echoed those expressed in what I consider
the “landscape papers” (the views of the Berkeley group
[3], the 21st Century study [4] and the US Presidential
Science and Advisory recommendations [5]). These
papers argue that current technology is inadequate to
meet the rapidly-increasing demands for transmitting,

storing and manipulating large data sets. The landscape
papers call for new models of computation to meet these
demands. Even so, research and resources continue to be
directed towards incremental improvements in the
instruction and address-based architectures that express
the dominant von Neumann computational model [3, 6].
Little effort is being directed at conceptualizing
alternatives.

Those calling for new computational models, as well
as those working to improve the current architectures,
have identified concerns with limitations such as the
memory wall, excessive power consumption, complexity
of programming, reliability, and the cost of hardware
development [1–6]. This paper argues that these are
symptoms, and not the underlying reasons why the
instruction- and address-based architectures cannot meet
the demands of large data and intensive computing. This
paper explores the inherent limitations of the dominant
von Neumann computational model, and explains how
an alternative computational model and its expression in
an appropriate computer architecture and programming
language, can avoid them.

THE COMPUTATIONAL NEEDS

While I had a good idea of what the computational
needs were for handling large data, I was surprised by
what the CERN and SKA researchers identified as
priorities. Very high on their priorities was to limit the
cost of hardware, as well as running costs, and
optimising the application code and operating system
were seen as critical to achieving this. A particular
concern was that such optimisation is problem- and
technology-specific, resulting in a moving target as
technologies change. They were also concerned about
power consumption and how “green” the technology is.
Concerns with data and instruction bottlenecks did get
mentioned in discussing the more technical aspects of
parallelism and input and output. The impression I
gained from the workshop was that current technology is
a long way from being able to address the computational
needs of both the SKA and CERN projects.

The landscape papers [3–5] look at the viability of
continuing to scale computer hardware. The 21st
Century Computer Architecture paper [4] and the
Workshop on Advancing Computer Architecture

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Conrad S. M. Mueller 12

Research [1] conclude that (1) increasing the power per
chip and the reliability are not sustainable; (2)
communication between chips cannot cope with
increased speeds; and (3) new designs are prohibitively
costly. Ideal properties required for high-performance
computing are identified as: performance, security,
parallelism, improved communication, reduced energy
requirements and programmability. Amongst the
recommendations are to (1) contain energy requirements
by moving from serial to parallel, (2) minimise
communication, (3) better manage the memory
hierarchy, (4) develop a new programming model that
enables better management of resources, (5) revisit the
program stack, (6) co-design hardware and software, (7)
provide functionality and performance across a wide
range of architectures, and (8) improve the verifiability
and reliability of both hardware and software. Doesn’t
this extensive list suggest something seriously wrong
with the whole computational model?

The earlier Berkeley paper [3] echoes many of the
sentiments of the 21st Century paper [4], however one of
their proposals is to focus more on programming.

Since real world applications are naturally
parallel and hardware is naturally parallel,
what we need is a programming model,
system software, and a supporting archi-
tecture that are naturally parallel. Resear-
chers have the rare opportunity to re-invent
these cornerstones of computing, provided
they simplify the efficient programming of
highly parallel systems [3].

These papers argue for a programming model that
bridges the gap between applications and hardware.
They also examine the memory wall and delays in
memory access, as well as the need to shift focus from
upping the speed of the clock, to greater parallelism.
Other important aspects to be addressed are: coherence,
synchronisation, programming models that are
independent of the number of processors and address a
rich set of data types and sizes, resource management,
and how to improve the applications code and the
operating system.

These kinds of concerns are not new. As far back as
1977, Backus [6] identified the need to liberate
programming from the instruction and address-based
model and explored potential solutions. He identified
what he called the von Neumann bottleneck.

The task of a program is to change the
contents of the store in some major way;
when one considers that this task must be
accomplished entirely by pumping single
words back and forth through the von
Neumann bottleneck, the reason for its
name becomes clear. ... Ironically, a large
part of the traffic in the bottleneck is not
useful data but merely names of data, as
well as operations and data used only to
compute such names. [6]

Backus predicted that non-von Neumann languages
would dominate in the long term, but made the mistake
of trying to address the bottleneck with a programming
language implemented on a von Neumann architecture
[6].

In these papers we see almost all the research effort
being directed towards improving the instruction and
address-based architecture, without questioning whether
it is a suitable architecture.

WHY THE VON NEUMANN MODEL
IS AN OBSTACLE

Much has been written about the efficiency cost of
the memory hierarchy [7–10], but there has been little
reflection on the causes of this inefficiency. Consider the
probability that a particular memory address will be
accessed in the next 1000 instructions. That probability
is less than 1000/(size of memory), which is close to
zero, even if we only consider the cache memory. If we
consider the addressable memory, this probability is
negligible. This is one example of how the design of the
von Neumann computational model is inherently
inefficient and the efficiency cost of the memory
hierarchy is a symptom of this inefficiency. This simple
example led me to think that we are approaching
research into computing performance incorrectly,
focusing on symptoms rather than causes.

In this section I examine key design flaws in the von
Neumann model that need to be addressed if we are to
achieve orders-of-magnitude improvements in
performance. The von Neumann computational model
makes use of instructions to process data, with the
instructions and data stored in addressable memory.
Instructions and memory addressing are two
fundamental aspects of the model. For each, I explore
the implications for speed of execution, cost of
hardware, energy consumption and reliability. By
unpacking the causes of these limitations in the von
Neumann computational model, I argue for the need to
explore alternatives.

A. The limitations of addressable memory
I have described above the inefficiency in the number

of specific memory addresses that are accessed by a
particular piece of program code. The manner in which
memory storage is used is also inefficient. Most
instructions result in information moving in and out of
memory: getting the instruction, getting the data and
storing the result. Instruction and data blocks may need
to be swapped in and out of levels of the memory
hierarchy as processing time is allocated to different
processes following events like interrupts, page faults
and process scheduling. A dirty cache block results in
the further cost of having to save the cache block before
bringing in the new block. These inefficiencies are
inherent in the address-based model; they cannot be
addressed by improved communication speeds,
alternative memory hierarchies or the introduction of
more processors.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

A New Computational Model for Real Gains in Big Data Processing Power 13

Addressable memory appears to have three
inherently problematic properties: (1) a finite address
space, (2) numeric addresses which lead to linearity and
(3) information-poor address referencing. All of these
increase the complexity in programming [3–6].

A finite address space means that for non-trivial
computations, some memory locations have to be reused.
The program will thus need to know when a value can be
stored in a particular address, and when that address has
been reallocated. The consequences of this are that the
program code has to manage the sequence and timing of
the allocation of values to memory locations. That is, the
code must manage what memory has to be allocated, for
what purposes, and at what stage in the computation, as
well as the allocation of values to the appropriate
memory locations.

Numeric addresses results in a linear address space.
This has implications for how data structures are stored.
A consequence of a linear address space is stamp-
coupling which requires all the components of a
structured variable, such as an array, to be stored as a
complete entity. Memory must be allocated for the entire
structure, even if only one reference to one component is
still needed. Referencing this memory for the structure is
also inefficient, including global variables, parameters
and indirect references. The components of the structure
have to be accessed using offsets or pointers. Using
offsets incurs the cost of calculating the offset and
indexed addressing. Pointers require two levels of
addressing as well as managing the allocation and
deallocation of memory.

A second consequence of linearity is that we cannot
be efficient about what is stored in active memory. As
discussed above, a major overhead in the memory
hierarchy is moving instructions and data around. Ideally
we would want to predict what variables and instructions
are required in the upcoming computations and load only
these into memory. While one can predict the
instructions likely to be executed and, given these,
possibly predict the variables required, it is not possible
to separate out and load only those instructions and
variables; linear addressing requires continuous
sequences of memory locations to be moved at once.

When people perform computations naturally, they
make use of semantic information that aids in this
process. For example, if I am subtracting liabilities from
assets, the word “liabilities” is both a place-holder for a
value and it communicates the meaning of that value.
Although a memory address is a place-holder for a value,
it lacks the semantic information that might aid in
understanding the uses to which the value can be put. In
the von Neumann model, the meaning of a value in a
memory location is a complex composition of factors:
the instruction currently executing, the statement in the
program that relates to that instruction, the variable in
that statement that is related to the memory address, and
which instance of the variable is currently being referred
to, which in turn depends on the state of execution of the
program. The lack of semantic information means that

the memory address provides no information as to how
to process the value contained in the memory location,
nor does it contribute to preventing accidental or
malicious use or alteration.

The use of addressable memory requires the program
to carry out the computations relating to a given value of
a variable while that value remains in the memory
location. State is thus critical. Not only does a program
have to make correct computations with values, but it
also must ensure that these computations take place in
the correct sequence and at the appropriate time. This
requires a programmer to apply temporal reasoning in
designing a program, which considerably increases the
complexity of the task.

Addressable memory results in a finite address space
that is organised in a linear fashion and referenced by
meaningless numeric addresses. These limitations lead to
processing overheads that result in poor performance and
the inefficient use of hardware and energy, as well as
complexity which contributes to unreliability. The
biggest inefficiencies occur as a result of data access:
getting an operation, retrieving data, storing a result and
incrementing a program counter. Each instruction
involves, at best, one memory access and at worst, three
memory accesses, as well as an index and a register
access. The execution of an instruction can also escalate
into page faults, operating system interventions and so
forth.

Before turning to the weaknesses that result from the
inherent properties of instructions, it remains to point out
that addressable memory imposes an instruction-based
architecture because it requires instructions to perform
the functions involved in managing memory resources:
to allocate, access and reallocate memory locations.

B. The limitations of instructions
Similarly, the instruction aspect of the von Neumann

model has properties that result in inherent limitations.
These are that (1) instructions are inherently sequential;
both in terms of how each is processed and in relation to
other instructions, (2) a sequence of instructions must
fully occupy a processor while it is being executed, (3)
instructions are themselves stored in memory in the same
way as data, and (4) instructions are devoid of semantic
information.

Instructions are inherently sequential in two different
senses. Firstly, the manner in which the von Neumann
model processes instructions, the instruction cycle, is
sequential. The steps in the instruction cycle – getting
the instruction, getting the data, combining the
instruction with the data, performing the operation and
saving the result – are executed in sequence. This model
makes it impossible to break up the steps in the
instruction cycle and have them carried out concurrently
and asynchronously. This would allow the most time
consuming steps to be handled by different hardware and
buffering where the duration of a step may vary
depending on the instruction.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Conrad S. M. Mueller 14

Because the steps in the instruction cycle have to be
carried out in sequence, the von Neumann model needs a
clock to allocate time to each step. This clock allocates
the same time to each step, meaning that hardware lies
idle when a simple step is performed and the speed of
the clock is limited by the slowest step in the instruction
cycle. The only way to speed up processing is to speed
up the clock. Chip manufacturers struggle with
increasing power consumption and reliability as the
clock speed is increased [8]. Having a clock in control
makes hardware design more complex and harder to
verify [7]. The design would be considerably simpler if
each hardware function could be independent and did not
have to be synchronised.

At any one time, only one sequence of instructions is
being executed by a processor, until it relinquishes
control back to the operating system, either by
terminating or as the result of an interrupt. If interrupts
are disabled, the executing code can keep control until
the processor is reset. Even worse, with supervisor mode
enabled, the executing code can potentially make
changes outside the scope of its intended operation,
including to the operating system. At best this weakness
results in the potential for instability, but at worst it is
exploited for malicious ends. The inclusion of third party
code, such as drivers, in the operating system and the
complexity of applications and the operating system,
makes it almost impossible to verify that such errors
cannot occur.

The consequence of this design, and a key feature of
the von Neumann architecture, is that instructions are
themselves stored in memory in the same way as data.
The processor cannot easily differentiate between
instructions and data in order to treat them differently.
Program instructions can be downloaded, created or
modified, and program code is thus vulnerable to errors
and attacks. The processor does not control which
instruction is to be executed next and what data is
required. This can result page faults as well as context
switches that require the swapping in and out of cache,
as well as memory blocks, resulting in memory
bottlenecks [8].

The nature of processing instructions means that the
processor cannot be used efficiently. The processor is a
critical resource which ideally should be fully occupied
with application-related operations. Running a single set
of instructions will typically result in a large amount of
idle time due to delays from caching and input or output.
One way to reduce idle time is for a number of sets of
instructions to share the processor (multi-tasking), but
this requires intervention by the operating system which
comes at a cost. Another way to reduce idle time is to
express a task as a number of concurrent sets of
instructions (parallel processing). Typically these
concurrent sets of instructions need to share data.
Running them concurrently and the sharing of data has
to be managed by the application, or by the operating
system and this increases the amount of time that the
processor is dealing with non-computational or overhead
tasks. Whichever way, there are inefficiencies.

Efficient parallel processing requires work to be
distributed evenly across processors. In most cases this
requires passing or sharing of data across processors
which results in problems such as deadlocks and race
conditions that need to be addressed at a cost. There are
potential delays in synchronising between processes such
as waiting for data to be passed and to be read, or for a
semaphore to enable access to data. Some of these
problems can be mitigated by dealing with larger chunks
of data, but this decreases the granularity of the
parallelism.

In the same way that semantic information creates
understanding of the meaning of values in memory, it
can also illuminate the meaning of computations. A
simple statement such as area = length * breadth
expresses a straightforward computation. Area can be
calculated once the values of length and breadth are
defined. The instruction and address-based model
introduces complexity into such a computation. The
variables length and breadth may take on different
values. Which values does the statement refer to? The
risk of errors could be lowered by semantic information
that relates the values and operations.

I have argued here that instructions have inherent
properties that limit performance and reliability. The
processing of an instruction requires a series of steps to
be completed in sequence that necessitates the use of a
clock, instructions are designed to be carried out in
sequence, they fully occupy a processor while being
executed, and they are expressed in a manner that lacks
semantic information. These inherent properties of
instructions result in poor performance and the
inefficient use of hardware and energy, as well as
introducing complexity and opportunities for errors and
abuse which contribute to unreliability.

FEATURES DESIRABLE FOR HIGH
PERFORMANCE

So we are now aware of the inherent properties of
addressable memory and instructions that result in
weaknesses in the von Neumann computational model.
What features of a computational model are desirable in
order to avoid these weaknesses?

To achieve high performance the aim is to complete
each computation in the shortest possible time. The time
taken to complete a computation can be reduced by (1)
avoiding delays due to the inefficiency of the memory
hierarchy (2) increasing parallelism, (3) fully utilising
the processor and removing the overheads of the
operating system. Speeding up the processing should,
ideally, (4) reduce energy consumption, (5) simplify
hardware design, and (6) simplify programming while
making systems less vulnerable to malicious attack, all
without introducing additional costs.

In the von Neumann model, the processing of each
instruction involves a number of steps that are completed
in sequence and controlled by a clock. The hardware
remains idle if a step takes less time than the clock step.
Hardware could be better utilised if these idle times were

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

A New Computational Model for Real Gains in Big Data Processing Power 15

reduced or eliminated. One way to do this would be to
decouple the steps in the cycle so that each step is self-
contained and does not need the central clock to
synchronise. The hardware for each step can then
execute independently (for example, the arithmetic logic
unit would not have to remain idle during a “load” step).
Buffering between these components can be used to
negate delays and to enable the parts of the execution
cycle to execute in parallel. By decoupling the steps in
the execution cycle, the design of the hardware could be
simplified as circuits for each execution step could be
designed separately and optimised for a particular step in
the execution cycle. So the first desirable attribute is that
the computational model should allow for decoupling of
the steps involved in executing an instruction.

Parallelism increases performance and the more fine-
grained the parallelism can be (without increasing the
coordination overhead), the greater the performance
improvement. If parallelism were taken to the level of
each operation, this would mean that any operation
should be able to be computed as soon as the operand
values become available. Each operation may result in a
value that needs to be stored, so in order not to limit the
degree of parallelism, there should be no limit on how
many such variables can be created and, in order to
distinguish between them, each should be able to be
uniquely referenced. That is, each variable should be
referentially transparent throughout the computation. So
the second desirable attribute is that the computational
model should allow for unlimited parallelism and
unlimited, uniquely referenced variables.

The von Neumann computational model has the
operating system using valuable processor time to
allocate both processor and memory resources. The
demand from applications for resources is dynamic and
cannot be determined a priori. Since the objective is to
optimise the use of the processors, these processors
should not be involved in resource management. Better
ways of determining how to allocate resources are
needed and the task can be delegated to a separate unit.
So our third requirement is that the computational model
should separate resource management and the
processing of steps in the execution cycle and have
different hardware circuits for these functions.

A computation is made up of a number of different
steps: identifying the operation to perform, determining
the data involved, performing the operation, and
determining what to do with the result. Further there are
additional tasks such as input and output of data. If each
of these steps could be carried out independently then (1)
the circuitry for each could be optimally used, (2) the
complexity of the circuits could be considerably reduced
(not have to synchronise with the clock), (3) the wire
lengths within circuits can be reduced as each compo-
nent is self-contained, facilitating increased speeds at
lower temperatures and (4) where there is larger demand
for some components these can be duplicated.

Memory access for both instructions and data should
not impact on the performance of the CPU. In particular,

an application should not have to wait because required
instructions or data are not in memory. An address
access costs more than a register access, both in time and
hardware, and should be avoided. So, the fourth
desirable attribute is that the computational model
should be able to provide the processing circuits with
what they need “just-in-time”.

One factor often overlooked in discussions of
computational models is the cost of developing and
maintaining software. Operating systems, utilities and
development tools are complex so that their development
requires considerable investment in time and skilled
programmers. Optimising these tools to get the best
hardware performance for a given application requires
considerable skill and experimentation. When
performance is critical, each software application needs
to be tailored and this requires an in-depth understanding
of the hardware, the operating system, utilities and
development tools on the part of the programmer. In
addition high performance can often not be achieved
without modifying program code for specific instances
of hardware and operating system. Programming that
requires temporal reasoning and the ability to imagine all
the possible states of a system requires high level
cognitive skills that are in short supply. So, the fifth
desirable attribute is a computational model that
simplifies programming and optimisation of programs.

We have discussed several features of the von
Neumann model that result in vulnerabilities. An
incorrect index value can result in data or code being
corrupted, whether accidentally or maliciously. Of
concern is that such failures often go undetected with
unknown consequences. So, the sixth and final desirable
feature is that the computational model should result in
robust software that is not vulnerable to errors in the
code or to attack. In particular these vulnerabilities can
be avoided if code and data cannot be changed during
execution.

The next section explores whether it is possible to
design an alternative computational model that has these
features.

ARE THERE ALTERNATIVE
COMPUTATIONAL MODELS?

It is easy to find fault with a system and more
difficult to propose alternatives. However in this case a
computational model already exists without the
identified weaknesses that can form the basis for an
alternative architecture. This paper compares the
instruction and address-based computational model with
the natural way in which people compute. I argue that
the semantic information that people associate with the
elements of computation could be mimicked to gain
efficiencies in computer architecture.

C. The broad principles of the model
Space limitations prevent a full description of the

implementation of the model, so the paper describes the
principles and outlines the implementation.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Conrad S. M. Mueller 16

The one alternative computational model is simple,
manual arithmetic calculation. Simple mathematical
notation has been used to describe such calculation. For
example, the sum of a series of numbers can be
expressed as:

s0=0, si+1=si+ni

(This expression allows the computation of any set of
numbers, even an unlimited set.) Given a set of numbers:

n0=5, n1=3, n2=-4

the computation can be done as follows:

s0=0, s1=s0+n0=0+5=5, s2=s1+n1=5+3=8,
s3=s2+n2=8+(-4)=4

The computation described relies on:
• a generalised relation si+1=si+ni that holds for a class

of variables;
• variable identifiers (in this case s and n) used to

determine which generalised relation applies to the
variable;

• variable indices used to instantiate specific variables;
• a value associated with each variable, for example the

value 3 with the variable n1;
• each variable having only one value; so that n1 is only

ever 3 and does not take on other values as it would it
an instruction-based program;

• the relating of variables expressed in a relation; and
• the computation of a result using the relation.

To automate such a computation would require:

• a means to record generalised relations,
• a means to identify (a possibly infinite number of)

variables and their associated values,
• some way of identifying the relations that a variable is

part of,
• a way to compute the operations in the relation; and
• some process that drives the computation in a similar

way to the instruction cycle.
In this model a variable is not a place in memory.

Rather a variable consists of an identifier (possibly
including an index), and a value. Variables become
available when their identifiers and values are known.
Each variable can have only one value throughout the
execution of the program. This means that each variable
identifier is associated with something in the problem
domain. The variable identifier thus tells us about that
thing in the problem domain, effectively associating
semantic information with the value. It may be helpful to
think of a variable in the mathematical sense, of an
element in a domain that has defined relationships with
other elements.

This model does not have instructions. Rather the
process is driven by which variables are available at any
given time and which relations the variables are part of.
To automate the manual process, variables (with their
values) are “processed” as they become available. Each
variable identifier is matched with the relations it forms

part of. If all the necessary variables for a defined
relation are available the result is calculated and
becomes available as a new variable. Once a variable has
been processed for all the relations that it is part of, it is
discarded.

The inherent parallelism is that any number of
variables can be processed at the same time. As soon as
the variables for any relation are available, the result can
be computed.

D. Accumulating variables for a relation
For any particular relation, all the variables needed

may not become available at the same time. The design
challenge for the architecture is to accumulate the
variables that form part of a relation so that once all the
variables (with their values) are available, the
computation can be carried out. This section argues that
all relations can be reduced to unary, binary or indexed
relations and gives examples of how this accumulation
could be done for each of these three cases. (Selection,
which is required for Turing completeness, can also be
reduced to a binary operation, but this is beyond the
scope of the paper.)

Like with conventional compilers and computers, a
relation can be broken up into simple relations consisting
of a single operator with one or two operands [2]. In this
way, the problem is simplified by only having to deal
with relations that consist of unary or binary operations.
The unary operations are straight-forward as the
operation is applied to only the variable currently being
processed and there is no need to identify additional
variables. The operand is applied to value of the variable
being processed and a new variable is created. For
example, given the relation n=−p and the variable p=5,
when the variable p is processed, the identifier p is used
to establish that the variable is used in the relation n=−p
and a new variable n=−5 is created by applying − to the
value 5 of p. The resulting variable, n=5 is now available
to be processed.

The binary operation is more complex. To compute
the relation v=a+b, the values of the two variables a and
b need to be available. However variables may become
available independently of one another; there is no
synchronising of the variables. One approach is to get rid
of operations requiring two operands and replace them
with unary operations that apply to a tuple t=[a;b]. The
relation v=a+b can now be expressed as v=+t. We create
the tuple t using two operations: ⋉ to create the left part
of the tuple and ⋊ to create the right part of the tuple. So
we also have the relations t=⋉a and t=⋊b.

So when the variable a is processed, it forms the left
part of a tuple t and when the variable b is processed it
forms the right part of the tuple t. When both a and b
have been processed and both parts of the tuple t exist,
the operation can be applied and the relation computed.
For example, with the above relations and the variables
b=5 and a=3 processed one after the other, the result is:

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

A New Computational Model for Real Gains in Big Data Processing Power 17

Variable Relation Partial tuple Variable

b=5 t=⋊b t=[;5]

a=3 t=⋉a t=[3;] t=[3;5]

t=[3;5] v=+t v=8

The matching of the partial tuples is handled by a

dedicated tuple processor. This approach allows the two
operands to be processed in any order and the variable
identifier can be used to match the two halves.

A significant difference in this model is that variables
are associated with a single value for the duration of the
program. The requirement that variables each have only
one value means that we need to have an unlimited
number of variables to express programs that are non-
trivial. To achieve this, indices are introduced as shown
in the initial example. For this reason a variable
identifier may have an index associated with it and we
need to be able to increment the indices. Note that the
index (if there is one) is part of the variable and not a
separate variable. The sum expressed as si+1=si+ni can be
broken down into the following relations:

s′i = ⋉si
s′i = ⋊ni
s″i = +s′i

si+1 = [+1] s″i
where [+1] is the operation to add 1 to the index.

Given the variable values above, the computation can
proceed as follows:

Variable Relation Partial tuple Variable

s0 = 0 s′i = ⋉si s′0 = [0,]
n0 = 5 s′i = ⋊ni s′0 = [0,]
 s′0 [,5] s′0 = [0,5]

s′0 [0,5] s″i = +s′i s″0 = 5

s″0 = 5 si+1 =
[+1]s″i s1 = 5

s1 = 5 s′i = ⋉si s′1 = [5,]
n1 = 3 s′i = ⋊ni s′1 = [5,]
 s′1 [,3] s′1 = [5,3]
s′1 = [5,3] s″i = +s′i s″1 = 8

s″1 = 8 si+1 =
[+1]s″i s2 = 8

s2 = 8 s′i = ⋉si s′2 = [8,]
n2 = -4 s′i = ⋊ni s′2 = [8,]
 s′2 [,-4] s′2 = [8,-4]
s′2 = [8,-4] s″i = +s′i s″2 = 4

s″2 = 4 si+1 = [+1]
s″i s3 = 4

Note that the variables can be processed in any order.

The sequence above is to aid with following the
computation process. Note too that the indices in the

relations play no role in the computation and the
relations could equally be expressed as:

s′ = ⋉s
s′ = ⋊n
s″ = +s′

s = [+1] s″

E. The computational cycle
The computational cycle has similarities to the

traditional instruction cycle but the steps are decoupled
from one another. The steps are:
• get the next available variable, including the unique

identifier and value (analogous to getting the data)
• get the relations that apply to the variable (analogous

to getting an instruction)
• apply the operation of each relation to the value to

create a new variable (analogous to performing the
instruction)

• store the newly created variable (analogous to storing
the result)
The architecture would then need the following four

units to perform these functions:
The Mapping unit pops a variable (x, i, 5) off a

variable queue and uses the identifier x to identify a list
of relations that involve this variable. For each relation
(for example v=-x), an augmented variable is created
which consists of the identifier of the new variable to be
created by the relation (v), the index i of the popped
variable, the value of the variable (5) and the operation
of the relation (-). (In the example given, the augmented
variable would be (v, i, 5, -).) Depending on the
operation, the augmented variable is then pushed onto
the evaluation queue, the tuple queue or the index queue
to be dealt with by one of the units described below.

The Evaluation unit deals with operations on variable
values. It pops an augmented variable off the evaluation
queue and applies the operation to the value. If the result
is defined, a new variable is created with the identifier
and index of the augmented variable, and the value
resulting from the operation. (In the example, (v, i, -5)).
This variable is pushed onto the variable queue for
processing by the mapping unit.

The Index unit deals with operations on indices. It
pops an augmented variable (such as (v, 3, 5, [+1])) off
the index queue and applies the (index) operation to the
index. If the result is defined, a new variable is created
with the identifier and value of the augmented variable,
and the index resulting from the (index) operation. (In
the example, (v, 4, 5).) The variable is pushed onto the
variable queue for processing by the mapping unit.

The Tuple unit deals with the creation and matching of
tuples. It pops an augmented variable off the tuple queue
(for example (v, i, 5, ⋊)). If the matching tuple does not
exist (within the Tuple unit’s hash table), it creates a
variable with a partial tuple (in this case (v, i, [;5]) which
remains in the Tuple unit (stored in a hash table) to be
matched in the future. If the matching tuple exists (for
example vi=[3;]), it creates a variable with identifier and

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Conrad S. M. Mueller 18

index of the augmented variable and a tuple made up of
the values of the two matching tuples. (In the example,
(v, i, [3,5]).) The variable is pushed onto the variable
queue for processing by the mapping unit.

The design deliberately enables each of these units to
operate independently of each other, thus achieving the
desired decoupling of the execution steps. Fig. 1 gives a
schematic view of how such a model can be
implemented.

Fig. 1. Schematic of the proposed architecture

Indices can be used to handle abstraction and

complex flexible data structures. Input can be handled by
another unit that interfaces with the input device and
translates the input into variables that are pushed onto
the variable queue. Output variables are picked up by an
output unit and translated into the correct format for the
output device. A more complete description of the
implementation and simulations of its functioning can be
found elsewhere [10, 11]. The model has shown promise
with experimentation on an emulation which has limited
operations. High degrees of parallelism were achieved
and no unexpected pitfalls emerged [12].

In this model a program is expressed as an unordered
list of relations between variables. This simplifies
programming as the programmer does not need to be
concerned with the timing of execution and states. The
use of queues means that processing takes place as soon
as the variables become available to process, giving us
the desired “just-in-time” processing.

The purpose of this paper is to argue for exploring
such new models of computation rather than giving the
full details of the implementation. The following section
discusses how the suggested model avoids the
weaknesses identified in the instruction and address-
based model, the objective being to show that these
weaknesses are not present in all computational models
and architectures.

THE PERFORMANCE POTENTIAL
OF ALTERNATIVE MODELS

The argument is that the instruction and address-
based model has inherent weaknesses which make it

unsuitable for high performance computing. Six
properties were identified that are desirable for high
performance computing and the previous section
presented a model that has these properties. In this
section an assessment is made as to the potential of the
proposed model to meet the needs of high performance
computing. As identified in the beginning of Section 4,
the considerations are: (1) memory management, (2)
parallelism, (3) use of the processor, (4) running costs,
(5) cost of design and (6) software costs and reliability.

F. Memory management
First, the problems related to memory management

include (a) inefficient use of memory, (b) the cost of
bottlenecks in moving data around, and (c) an additional
workload for the central processing unit to manage data.

The proposed variable-based model uses memory
more efficiently because only active variables are stored.
No storage is allocated to undefined variables or to
variables that have been processed and are no longer
required.

A limited number of active variables need to be kept
in high speed memory. As the gap between processing
times and memory access times widens, it is necessary to
use high speed caches which can match processor
speeds. This model only requires buffers for the front
and back of the variable queue to handle variables about
to be processed, and the newly created variables about to
be stored. The sizes of these buffers are minimal as they
only have to be large enough to handle the transfer. This
reduces the cache and memory sizes. Data bottlenecks
are avoided by ensuring that only data about to be
processed is transferred to high speed memory.

The model avoids the need for interrupts. In addition,
the queue of variables can contain variables from
different tasks with the task information stored as part of
the semantic information in each variable, thus avoiding
the need for time-slicing.

The instruction and address-based model requires a
complex memory hierarchy to handle the virtual memory
model, involving different levels of caches, memory and
secondary storage. Blocks of data are transferred in and
out of these layers with additional costs if the block has
to be written back. Large amounts of data that are not
required are unnecessarily moved around because access
to a variable in a block requires the whole block to be
transferred into cache. An interrupt or a time slice
inevitably results in transferring blocks of data across the
memory hierarchy.

In the proposed variable-based model, the atomic
elements of a data structure are separate variables and
their relationship to the data structure is contained in the
semantic information that forms part of the variable
identifier. Each of the atomic components that make up
the structure is processed independently. Thus there is no
need for data structures such as an array to be stored as a
continuous block of memory. Nor does the structure
need to remain in memory from when one element of the
structure is defined until there are no remaining elements
that may be referenced.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

A New Computational Model for Real Gains in Big Data Processing Power 19

The atomic variables in the proposed model contain
structural information of more complex data structures in
the semantic component of the variable. Unlike the
instruction and address-based model, where structure is
represented either using pointers or linear positional
information. The variable-based model thus avoids the
central processing unit overhead of managing dynamic
space, as well as calculating the address of components
in the structure.

G. Parallelism and use of processors
There is broad agreement that any architecture that is

to meet the demands of large data and intensive
computation will need high degrees of parallelism and
highly efficient use of processors. Optimal levels of
parallelism will be attained if processing can be assigned
at a low level of granularity to available processors
during execution.

The instruction- and address-based model is an
inherently sequential process. Parallelism is achieved by
breaking up the computation into a number of concurrent
sequential processes. These processes require
intervention by the operating system to ensure each
process is given access to a processor and to handle
communication between processes, be it message
passing or shared memory. Processes need to be
allocated to a specific processor. The code determines
the order computations take place, the memory
allocation and the use of memory. All of this adds
complexity to programming and the execution of parallel
programs and parallel processing cannot be optimised
during execution.

The proposed variable-based model is inherently
parallel because it operates non-sequentially and
processing is at the level of each variable. Variables can
be evaluated, as they become available, by any available
processor, making the parallelism fine-grained. The
mechanism allocates resources, rather than a program,
and no intervention is required by the operating system.

In this model, a program is a specification of
relationships between variables expressed in simple
mathematical notation. Programming consists of
describing relations between variables. The programmer
does not have to define the sequence of execution or
specify the allocation of resources. There is no need to
break a program into parallel tasks with complex
synchronisation mechanisms between them, and the
programmer does not need to concern themselves with
the architecture or configuration of processors.

A major focus in improving the performance of
current architectures has been on improving the
execution cycle. The steps of getting the instruction,
getting the data, performing the operation, saving the
result and updating the program counter need to done in
order and synchronised by the clock cycle. These steps
are required in order to combine the instruction with the
data before the instruction can be performed. The
instruction is determined by the program counter, just
before the instruction is performed, and the necessary

data identified once the instruction is loaded. These
phases have to be synchronised to maintain the
instruction pipeline, hence the clock is critical.

The variable based model decouples the different
functions involved in the processing of a variable. The
functions of mapping, evaluating, indexing, forming
tuples and input and output can proceed independently
and in parallel with each other; synchronisation is
handled by the system. So the model is inherently
parallel in terms of its design as well as in terms of the
execution of programs.

H. Costs and other considerations
Increasing the speed of the clock increases power

consumption, cost of manufacture, and running costs,
while reducing reliability. Not having to synchronise
phases of the execution cycle with a clock avoids delays
when one part of the cycle takes longer than the other. It
also allows the architecture to have multiple units for
each of the phases executing in parallel. Both of these
aspects increase the performance on the execution cycle
without having to increase an overall clock speed. This
has impacts on the reliability of the hardware and energy
consumption as well the cost of the hardware and
running costs.

Because processing is handled by four dedicated
processing units, each unit can designed independently
of the rest. This simplifies the design and allows for
performance optimisation within each unit (including
shorter connection lengths). There is no need for
complex synchronisation between units, which is
handled by the variable queue. Only limited use is made
of high speed cache, allocated to store the front of the
queue of variables about to be processed.

The proposed model simplifies programming (and
thus reduces the cost of programming) by reducing it to
the specification of relationships between variables. This
makes the programming task much simpler because the
programmer does not have to specify the order of
execution or how resources are allocated. Reasoning
about static relationships is simpler; the programmer no
longer has to be concerned with state and temporal
reasoning. There is no need to explicitly optimise code
for parallel execution.

Current architectures have a major weakness in that
they are vulnerable to accidental and malicious
corruption of memory. Perhaps even worse are the
unknown consequences of undetected pointer and index
errors. The proposed model avoids such problems
because it is not instruction driven. Variable-driven
processing avoids these vulnerabilities because it is not
possible to incorrectly alter an instruction or value, either
accidentally or maliciously. The identifier of a variable
determines how the variable is processed. An operation
can only result in a new variable being created, so no
code can be generated and no other variable can be
modified as each variable is processed. The operating
system functions are not performed by the units that
process variables. Thus the proposed model saves on the

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Conrad S. M. Mueller 20

cost of identifying such errors as well as the cost of the
consequences. It is a safer model of computing.

The variable based model illustrates that the
weaknesses of the instruction- address-based model are
not inevitable. Overcoming these weaknesses would
have considerable performance benefits for high
performance computing. This section discusses one
possible model that has the potential to address the
identified weaknesses.

POTENTIAL PITFALLS
AND SIGNS OF SUCCESS

There are two aspects of the variable-based model
presented here that have performance implications: the
matching of tuples and managing indices.

Forming tuples is a critical component in being able
to move away from addressing, providing the critical
intermediate step to form variables for binary operations.
The matching of tuples is likely to be of the same order
as that of the algorithm used in the computation. The
problem occurs when having to pair a newly created
unmatched tuple against an excessive number of
unmatched tuples. Work has been done to address this
using grouped tuples and distributing the matching task.

The model also requires that there be no limit on the
number of indices that can be attached to the semantic
component of variables. This enables complex data
structures and high levels of abstraction. Without going
into too much detail, it is possible to manage multiple
indicies using chains.

The model has shown promise when emulated with
limited operations [12]. High degrees of parallelism were
achieved and no unexpected pitfalls emerged. In
comparing a matrix multiplication program written in C
to run in parallel on multiple processors with an
equivalent variable-based program on the emulation, the
former has to perform more instructions than the latter
performs operations.

CONCLUSION

Some, such as the Berkeley group, advocate major
change in computing paradigms as follows:

Since real world applications are naturally
parallel and hardware is naturally parallel,
what we need is a programming model,
system software, and a supporting archi-
tecture that are naturally parallel. Re-
searchers have the rare opportunity to re-
invent these cornerstones of computing,
provided they simplify the efficient prog-
ramming of highly parallel systems. [1]

Yet we see little evidence of this challenge being
taken up. Instead considerable effort and resources are
going into improving the instruction and address-based
model. This suggests that either there is a belief that
significant improvements can still be made or that the
predominant belief is that there is no alternative.
However researchers continue to identify and analyse

weaknesses of the dominant model and to argue that it
has hard limitations and alternative models need to be
explored.

Proposing a radical departure from current models of
computing is not an easy task. Investments in the current
architecture in terms of current research and
development, as well as the installed base of hardware
and software are overwhelming and will be slow to
change [1]. However this ought not to deter research into
alternatives that may be needed to make progress in the
future.

The instruction and address-based model is so
entrenched in our thinking that it is difficult to conceive
of alternatives. This paper attempts to think more freely
about computing by first identifying the desirable
features of a computational model and architecture for
high performance computing, and then exploring the
design of a model that exhibits these properties.

The proposed model is non-sequential, allowing
immediate computation of any operation whose operands
are defined, putting the focus on processing variables
rather than instructions. The paper gives a brief outline
of how such a model might work. More detailed
information about the model, as well as the results of
emulation experiments are described elsewhere [10–12].
The proposed model does not exhibit the weaknesses of
the von Neumann model. The two models are compared
in terms of memory management, parallelism and the
use of processors, and issues of cost, to argue that the
proposed model has the potential to be better suited for
high-performance computing.

Being able to come up with an alternative model that
has the desirable attributes shows that there are
alternatives to the instruction and address-based model
that are worth exploring. At this stage it is not possible to
argue that the model can provide the basis for alternative
architectures that will out-perform current architectures.
It is possible that weaknesses in this model will emerge
that may outweigh the benefits. Considerably more work
will be needed to develop the model more fully, but
early attempts at emulating its functioning have been
promising.

The conclusion is that the von Neumann model is not
the most appropriate model to address the needs of large
data and high performance computing because of its
inherent weaknesses. However it is possible to design
computational models and computing architectures that
do not have the same inherent weaknesses, with the
potential to better meet the processing needs that science
is expecting from computing. Such alternatives are worth
exploring further.

ACKNOWLEDGMENT

The author thanks Judy Backhouse for significant
improvements to the paper.

REFERENCES
[1] M. Oskin, J. Torrellas, C. Das, J. Davis, S. Dwarkadas,

L. Eeckhout, B. Feiereisen, D. Jimenez, M. Hill, M. Kim,

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

A New Computational Model for Real Gains in Big Data Processing Power 21

J. Larus, M. Martonosi, O. Mutlu, K. Olukotun, A. Putnam,
T. Sherwood, J. Smith, D. Wood, C. Zilles, “Workshop on
Advancing Computer Architecture Research (ACAR-II) Laying
a New Foundation for IT: Computer Architecture for 2025 and
Beyond”, Computing Research Association, Seattle,
Washington, 2010.

[2] A. V. Aho, M. S. Sethi, J. D. Ullman, Compilers: Principles,
Techniques, and Tools, Addison-Wesley, 1986. ISBN 0-201-
10088-6

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. P. Patterson, W. L. Plishker, J. Shalf, S. W. Wiliams
and K. A. Yelick. “The Landscape of Parallel Computing Research:
A View from Berkeley”. Tech. rep., Electical Engineering and
Computer Sciences, University of California at Berkeley, 2006.
URL www://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-
2006-183.html.

[4] A Community White Paper. “21st Century Computer
Architecture”, http://cra.org/ccc/docs/init/21stcenturyarchitectu
rewhitepaper.pdf, 2012. URL http://cra.org/ccc/docs/init/
21stcenturyarchitecturewhitepaper.pdf.

[5] T.P.I.T.A.C. (PITAC). “Computational Science: Ensuring
America’s Competitiveness”. May 2005.

[6] J. Backus. “Can Programming Be Liberated from the
von Neumann Style? A Functional Style and Its Algebra of

Programs”. Communications of the ACM, vol. 21, no. 8,
pp. 613–641, 1977.

[7] J. Hennessy and D. Patterson. Computer Architecture: A Quanti-
tative Approach. Morgan Kauffman, 4th edition edn., 2007.

[8] M. D. Hill. “Research Directions for 21st Century Computer
Systems: Asplos 2013 Panel”. SIGARCH Comput. Archit. News,
vol. 41, no. 1, pp. 459–460, Mar. 2013. ISSN 0163-5964.
10.1145/2490301.2451165. URL
http://doi.acm.org/10.1145/2490301.2451165.

[9] S. A. McKee. “Reflections on the Memory Wall”. In
Proceedings of the 1st Conference on Computing Frontiers, CF
’04, pp. 162–. ACM, New York, NY, USA, 2004. ISBN 1-
58113-741-9. 10.1145/977091.977115. URL http://doi.acm.
org/10.1145/977091.977115.

[10] C. Mueller. “Element-Based Computational Model”.
International Journal of Modern Education and Computer
Science (IJMECS), vol. 4, no. 1, pp. 1–11, February 2012.

[11] C. Mueller. “Axiom based architecture”. SIGARCH Comput.
Archit. News, vol. 40, no. 2, pp. 10–17, May 2012. ISSN 0163-
5964. 10.1145/2234336.2234339. URL http://doi.acm.org/
10.1145/2234336.2234339.

[12] P. Mukala, J. Kinyua and C. Muller. A Theoretical Evaluation of
AriDeM using Matrix Multiplication, 2011 International
Conference on Communication Engineering and
Networks, ISSN: 2010-460X

Conrad S. M. Mueller has

been retired since 2016 but
holds a position on the council
of the University of the Witwa-
tersrand (Wits) South Africa. He
obtained his B.Sc. (1974),
B.Sc.Hons. (1975) and Ph. D.
(1989) in computer science from
Wits and a M. Sc. (1977) in com-
puter science from Rand Afri-

 kaansUniversity South Africa.
His earlier research started in the South African

Council for Scientific Research (CSIR) in 1976. After
this in 1979 he took a post as project engineer at Anglo
American to develop a control system based on the first

micro processors. Wanting to study further and
contribute to teaching resulted in him taking on an
academic post at Wits in 1981. His experience with
control systems, teaching of programming and the
beauty of mathematics resulted in him questioning the
imperative computational model. He has developed a
new paradigm based on manual arithmetic to express
computation and an architectural model to do the
computation. Towards the end of his career, he took on
more managerial roles of head of department and head of
school as well as academic consultant in setting up two
new universities. He held the position of professor at
Wits and extraordinary professor at the University of
South Africa. His is a member of the ACM.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

