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Abstract: Big data and high performance computing are 

seen by many as important tools that will be used to 
advance science. However, the computational power needed 
for this promise to materialize far exceeds what is currently 
available. This paper argues that the von Neumann 
computational model, the only model in everyday use, has 
inherent weaknesses that will prevent computers from 
achieving the envisaged performance levels. First, these 
weaknesses are explored and the properties of a 
computational model are identified that would be required 
to overcome these weaknesses. The performance benefits of 
implementing a model with these properties are discussed, 
making a case that a computational model with these 
properties has the potential to address the needs of high 
performance computing. Next, the paper presents a 
proposed computational model and argues that it is a viable 
alternative to the von Neumann model. The paper gives a 
simplified outline of an architecture and programming 
language that express the proposed computational model. 
The main feature of this computational model is that it 
processes variables as they become defined. These variables 
can be processed in any order and simultaneously, avoiding 
bottlenecks and enabling high levels of parallelism. Finally, 
the computational model is evaluated against the properties 
identified as desirable, showing that it is possible to design 
an architecture and programming language that do not 
have the weaknesses of the currently dominant von 
Neumann model. The paper concludes that the weaknesses 
which limit the performance of current computers can be 
overcome by exploring alternative computational models, 
architectures and programming languages, rather than by 
working towards incremental improvements to the existing 
dominant model. 
 

Index Terms: Big data, Computer architecture, 
Computational models, High-performance computing, 
Programming language. 

INTRODUCTION 

I recently attended a workshop discussing the 
computational needs of the European Organization for 
Nuclear Research (CERN) and the Square Kilometer 
Array (SKA) for large, data-intensive computations. 
These needs echoed those expressed in what I consider 
the “landscape papers” (the views of the Berkeley group 
[3], the 21st Century study [4] and the US Presidential 
Science and Advisory recommendations [5]). These 
papers argue that current technology is inadequate to 
meet the rapidly-increasing demands for transmitting, 

storing and manipulating large data sets. The landscape 
papers call for new models of computation to meet these 
demands. Even so, research and resources continue to be 
directed towards incremental improvements in the 
instruction and address-based architectures that express 
the dominant von Neumann computational model [3, 6]. 
Little effort is being directed at conceptualizing 
alternatives. 

Those calling for new computational models, as well 
as those working to improve the current architectures, 
have identified concerns with limitations such as the 
memory wall, excessive power consumption, complexity 
of programming, reliability, and the cost of hardware 
development [1–6]. This paper argues that these are 
symptoms, and not the underlying reasons why the 
instruction- and address-based architectures cannot meet 
the demands of large data and intensive computing. This 
paper explores the inherent limitations of the dominant 
von Neumann computational model, and explains how 
an alternative computational model and its expression in 
an appropriate computer architecture and programming 
language, can avoid them. 

THE COMPUTATIONAL NEEDS 

While I had a good idea of what the computational 
needs were for handling large data, I was surprised by 
what the CERN and SKA researchers identified as 
priorities. Very high on their priorities was to limit the 
cost of hardware, as well as running costs, and 
optimising the application code and operating system 
were seen as critical to achieving this. A particular 
concern was that such optimisation is problem- and 
technology-specific, resulting in a moving target as 
technologies change. They were also concerned about 
power consumption and how “green” the technology is. 
Concerns with data and instruction bottlenecks did get 
mentioned in discussing the more technical aspects of 
parallelism and input and output. The impression I 
gained from the workshop was that current technology is 
a long way from being able to address the computational 
needs of both the SKA and CERN projects. 

The landscape papers [3–5] look at the viability of 
continuing to scale computer hardware. The 21st 
Century Computer Architecture paper [4] and the 
Workshop on Advancing Computer Architecture 
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Research [1] conclude that (1) increasing the power per 
chip and the reliability are not sustainable; (2) 
communication between chips cannot cope with 
increased speeds; and (3) new designs are prohibitively 
costly. Ideal properties required for high-performance 
computing are identified as: performance, security, 
parallelism, improved communication, reduced energy 
requirements and programmability. Amongst the 
recommendations are to (1) contain energy requirements 
by moving from serial to parallel, (2) minimise 
communication, (3) better manage the memory 
hierarchy, (4) develop a new programming model that 
enables better management of resources, (5) revisit the 
program stack, (6) co-design hardware and software, (7) 
provide functionality and performance across a wide 
range of architectures, and (8) improve the verifiability 
and reliability of both hardware and software. Doesn’t 
this extensive list suggest something seriously wrong 
with the whole computational model?  

The earlier Berkeley paper [3] echoes many of the 
sentiments of the 21st Century paper [4], however one of 
their proposals is to focus more on programming.  

Since real world applications are naturally 
parallel and hardware is naturally parallel, 
what we need is a programming model, 
system software, and a supporting archi-
tecture that are naturally parallel. Resear-
chers have the rare opportunity to re-invent 
these cornerstones of computing, provided 
they simplify the efficient programming of 
highly parallel systems [3]. 

These papers argue for a programming model that 
bridges the gap between applications and hardware. 
They also examine the memory wall and delays in 
memory access, as well as the need to shift focus from 
upping the speed of the clock, to greater parallelism. 
Other important aspects to be addressed are: coherence, 
synchronisation, programming models that are 
independent of the number of processors and address a 
rich set of data types and sizes, resource management, 
and how to improve the applications code and the 
operating system. 

These kinds of concerns are not new. As far back as 
1977, Backus [6] identified the need to liberate 
programming from the instruction and address-based 
model and explored potential solutions. He identified 
what he called the von Neumann bottleneck.  

The task of a program is to change the 
contents of the store in some major way; 
when one considers that this task must be 
accomplished entirely by pumping single 
words back and forth through the von 
Neumann bottleneck, the reason for its 
name becomes clear. ... Ironically, a large 
part of the traffic in the bottleneck is not 
useful data but merely names of data, as 
well as operations and data used only to 
compute such names. [6] 

Backus predicted that non-von Neumann languages 
would dominate in the long term, but made the mistake 
of trying to address the bottleneck with a programming 
language implemented on a von Neumann architecture 
[6]. 

In these papers we see almost all the research effort 
being directed towards improving the instruction and 
address-based architecture, without questioning whether 
it is a suitable architecture.  

WHY THE VON NEUMANN MODEL  
IS AN OBSTACLE 

Much has been written about the efficiency cost of 
the memory hierarchy [7–10], but there has been little 
reflection on the causes of this inefficiency. Consider the 
probability that a particular memory address will be 
accessed in the next 1000 instructions. That probability 
is less than 1000/(size of memory), which is close to 
zero, even if we only consider the cache memory. If we 
consider the addressable memory, this probability is 
negligible. This is one example of how the design of the 
von Neumann computational model is inherently 
inefficient and the efficiency cost of the memory 
hierarchy is a symptom of this inefficiency. This simple 
example led me to think that we are approaching 
research into computing performance incorrectly, 
focusing on symptoms rather than causes.  

In this section I examine key design flaws in the von 
Neumann model that need to be addressed if we are to 
achieve orders-of-magnitude improvements in 
performance. The von Neumann computational model 
makes use of instructions to process data, with the 
instructions and data stored in addressable memory. 
Instructions and memory addressing are two 
fundamental aspects of the model. For each, I explore 
the implications for speed of execution, cost of 
hardware, energy consumption and reliability. By 
unpacking the causes of these limitations in the von 
Neumann computational model, I argue for the need to 
explore alternatives. 

A. The limitations of addressable memory 
I have described above the inefficiency in the number 

of specific memory addresses that are accessed by a 
particular piece of program code. The manner in which 
memory storage is used is also inefficient. Most 
instructions result in information moving in and out of 
memory: getting the instruction, getting the data and 
storing the result. Instruction and data blocks may need 
to be swapped in and out of levels of the memory 
hierarchy as processing time is allocated to different 
processes following events like interrupts, page faults 
and process scheduling. A dirty cache block results in 
the further cost of having to save the cache block before 
bringing in the new block. These inefficiencies are 
inherent in the address-based model; they cannot be 
addressed by improved communication speeds, 
alternative memory hierarchies or the introduction of 
more processors. 
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Addressable memory appears to have three 
inherently problematic properties: (1) a finite address 
space, (2) numeric addresses which lead to linearity and 
(3) information-poor address referencing. All of these 
increase the complexity in programming [3–6]. 

A finite address space means that for non-trivial 
computations, some memory locations have to be reused. 
The program will thus need to know when a value can be 
stored in a particular address, and when that address has 
been reallocated. The consequences of this are that the 
program code has to manage the sequence and timing of 
the allocation of values to memory locations. That is, the 
code must manage what memory has to be allocated, for 
what purposes, and at what stage in the computation, as 
well as the allocation of values to the appropriate 
memory locations.  

Numeric addresses results in a linear address space. 
This has implications for how data structures are stored. 
A consequence of a linear address space is stamp-
coupling which requires all the components of a 
structured variable, such as an array, to be stored as a 
complete entity. Memory must be allocated for the entire 
structure, even if only one reference to one component is 
still needed. Referencing this memory for the structure is 
also inefficient, including global variables, parameters 
and indirect references. The components of the structure 
have to be accessed using offsets or pointers. Using 
offsets incurs the cost of calculating the offset and 
indexed addressing. Pointers require two levels of 
addressing as well as managing the allocation and 
deallocation of memory. 

A second consequence of linearity is that we cannot 
be efficient about what is stored in active memory. As 
discussed above, a major overhead in the memory 
hierarchy is moving instructions and data around. Ideally 
we would want to predict what variables and instructions 
are required in the upcoming computations and load only 
these into memory. While one can predict the 
instructions likely to be executed and, given these, 
possibly predict the variables required, it is not possible 
to separate out and load only those instructions and 
variables; linear addressing requires continuous 
sequences of memory locations to be moved at once. 

When people perform computations naturally, they 
make use of semantic information that aids in this 
process. For example, if I am subtracting liabilities from 
assets, the word “liabilities” is both a place-holder for a 
value and it communicates the meaning of that value. 
Although a memory address is a place-holder for a value, 
it lacks the semantic information that might aid in 
understanding the uses to which the value can be put. In 
the von Neumann model, the meaning of a value in a 
memory location is a complex composition of factors: 
the instruction currently executing, the statement in the 
program that relates to that instruction, the variable in 
that statement that is related to the memory address, and 
which instance of the variable is currently being referred 
to, which in turn depends on the state of execution of the 
program. The lack of semantic information means that 

the memory address provides no information as to how 
to process the value contained in the memory location, 
nor does it contribute to preventing accidental or 
malicious use or alteration.  

The use of addressable memory requires the program 
to carry out the computations relating to a given value of 
a variable while that value remains in the memory 
location. State is thus critical. Not only does a program 
have to make correct computations with values, but it 
also must ensure that these computations take place in 
the correct sequence and at the appropriate time. This 
requires a programmer to apply temporal reasoning in 
designing a program, which considerably increases the 
complexity of the task. 

Addressable memory results in a finite address space 
that is organised in a linear fashion and referenced by 
meaningless numeric addresses. These limitations lead to 
processing overheads that result in poor performance and 
the inefficient use of hardware and energy, as well as 
complexity which contributes to unreliability. The 
biggest inefficiencies occur as a result of data access: 
getting an operation, retrieving data, storing a result and 
incrementing a program counter. Each instruction 
involves, at best, one memory access and at worst, three 
memory accesses, as well as an index and a register 
access. The execution of an instruction can also escalate 
into page faults, operating system interventions and so 
forth. 

Before turning to the weaknesses that result from the 
inherent properties of instructions, it remains to point out 
that addressable memory imposes an instruction-based 
architecture because it requires instructions to perform 
the functions involved in managing memory resources: 
to allocate, access and reallocate memory locations.  

B. The limitations of instructions 
Similarly, the instruction aspect of the von Neumann 

model has properties that result in inherent limitations. 
These are that (1) instructions are inherently sequential; 
both in terms of how each is processed and in relation to 
other instructions, (2) a sequence of instructions must 
fully occupy a processor while it is being executed, (3) 
instructions are themselves stored in memory in the same 
way as data, and (4) instructions are devoid of semantic 
information. 

Instructions are inherently sequential in two different 
senses. Firstly, the manner in which the von Neumann 
model processes instructions, the instruction cycle, is 
sequential. The steps in the instruction cycle – getting 
the instruction, getting the data, combining the 
instruction with the data, performing the operation and 
saving the result – are executed in sequence. This model 
makes it impossible to break up the steps in the 
instruction cycle and have them carried out concurrently 
and asynchronously. This would allow the most time 
consuming steps to be handled by different hardware and 
buffering where the duration of a step may vary 
depending on the instruction. 
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Because the steps in the instruction cycle have to be 
carried out in sequence, the von Neumann model needs a 
clock to allocate time to each step. This clock allocates 
the same time to each step, meaning that hardware lies 
idle when a simple step is performed and the speed of 
the clock is limited by the slowest step in the instruction 
cycle. The only way to speed up processing is to speed 
up the clock. Chip manufacturers struggle with 
increasing power consumption and reliability as the 
clock speed is increased [8]. Having a clock in control 
makes hardware design more complex and harder to 
verify [7]. The design would be considerably simpler if 
each hardware function could be independent and did not 
have to be synchronised. 

At any one time, only one sequence of instructions is 
being executed by a processor, until it relinquishes 
control back to the operating system, either by 
terminating or as the result of an interrupt. If interrupts 
are disabled, the executing code can keep control until 
the processor is reset. Even worse, with supervisor mode 
enabled, the executing code can potentially make 
changes outside the scope of its intended operation, 
including to the operating system. At best this weakness 
results in the potential for instability, but at worst it is 
exploited for malicious ends. The inclusion of third party 
code, such as drivers, in the operating system and the 
complexity of applications and the operating system, 
makes it almost impossible to verify that such errors 
cannot occur. 

The consequence of this design, and a key feature of 
the von Neumann architecture, is that instructions are 
themselves stored in memory in the same way as data. 
The processor cannot easily differentiate between 
instructions and data in order to treat them differently. 
Program instructions can be downloaded, created or 
modified, and program code is thus vulnerable to errors 
and attacks. The processor does not control which 
instruction is to be executed next and what data is 
required. This can result page faults as well as context 
switches that require the swapping in and out of cache, 
as well as memory blocks, resulting in memory 
bottlenecks [8]. 

The nature of processing instructions means that the 
processor cannot be used efficiently. The processor is a 
critical resource which ideally should be fully occupied 
with application-related operations. Running a single set 
of instructions will typically result in a large amount of 
idle time due to delays from caching and input or output. 
One way to reduce idle time is for a number of sets of 
instructions to share the processor (multi-tasking), but 
this requires intervention by the operating system which 
comes at a cost. Another way to reduce idle time is to 
express a task as a number of concurrent sets of 
instructions (parallel processing). Typically these 
concurrent sets of instructions need to share data. 
Running them concurrently and the sharing of data has 
to be managed by the application, or by the operating 
system and this increases the amount of time that the 
processor is dealing with non-computational or overhead 
tasks. Whichever way, there are inefficiencies. 

Efficient parallel processing requires work to be 
distributed evenly across processors. In most cases this 
requires passing or sharing of data across processors 
which results in problems such as deadlocks and race 
conditions that need to be addressed at a cost. There are 
potential delays in synchronising between processes such 
as waiting for data to be passed and to be read, or for a 
semaphore to enable access to data. Some of these 
problems can be mitigated by dealing with larger chunks 
of data, but this decreases the granularity of the 
parallelism.  

In the same way that semantic information creates 
understanding of the meaning of values in memory, it 
can also illuminate the meaning of computations. A 
simple statement such as area = length * breadth 
expresses a straightforward computation. Area can be 
calculated once the values of length and breadth are 
defined. The instruction and address-based model 
introduces complexity into such a computation. The 
variables length and breadth may take on different 
values. Which values does the statement refer to? The 
risk of errors could be lowered by semantic information 
that relates the values and operations. 

I have argued here that instructions have inherent 
properties that limit performance and reliability. The 
processing of an instruction requires a series of steps to 
be completed in sequence that necessitates the use of a 
clock, instructions are designed to be carried out in 
sequence, they fully occupy a processor while being 
executed, and they are expressed in a manner that lacks 
semantic information. These inherent properties of 
instructions result in poor performance and the 
inefficient use of hardware and energy, as well as 
introducing complexity and opportunities for errors and 
abuse which contribute to unreliability. 

FEATURES DESIRABLE FOR HIGH 
PERFORMANCE 

So we are now aware of the inherent properties of 
addressable memory and instructions that result in 
weaknesses in the von Neumann computational model. 
What features of a computational model are desirable in 
order to avoid these weaknesses? 

To achieve high performance the aim is to complete 
each computation in the shortest possible time. The time 
taken to complete a computation can be reduced by (1) 
avoiding delays due to the inefficiency of the memory 
hierarchy (2) increasing parallelism, (3) fully utilising 
the processor and removing the overheads of the 
operating system. Speeding up the processing should, 
ideally, (4) reduce energy consumption, (5) simplify 
hardware design, and (6) simplify programming while 
making systems less vulnerable to malicious attack, all 
without introducing additional costs. 

In the von Neumann model, the processing of each 
instruction involves a number of steps that are completed 
in sequence and controlled by a clock. The hardware 
remains idle if a step takes less time than the clock step. 
Hardware could be better utilised if these idle times were 
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reduced or eliminated. One way to do this would be to 
decouple the steps in the cycle so that each step is self-
contained and does not need the central clock to 
synchronise. The hardware for each step can then 
execute independently (for example, the arithmetic logic 
unit would not have to remain idle during a “load” step). 
Buffering between these components can be used to 
negate delays and to enable the parts of the execution 
cycle to execute in parallel. By decoupling the steps in 
the execution cycle, the design of the hardware could be 
simplified as circuits for each execution step could be 
designed separately and optimised for a particular step in 
the execution cycle. So the first desirable attribute is that 
the computational model should allow for decoupling of 
the steps involved in executing an instruction.  

Parallelism increases performance and the more fine-
grained the parallelism can be (without increasing the 
coordination overhead), the greater the performance 
improvement. If parallelism were taken to the level of 
each operation, this would mean that any operation 
should be able to be computed as soon as the operand 
values become available. Each operation may result in a 
value that needs to be stored, so in order not to limit the 
degree of parallelism, there should be no limit on how 
many such variables can be created and, in order to 
distinguish between them, each should be able to be 
uniquely referenced. That is, each variable should be 
referentially transparent throughout the computation. So 
the second desirable attribute is that the computational 
model should allow for unlimited parallelism and 
unlimited, uniquely referenced variables. 

The von Neumann computational model has the 
operating system using valuable processor time to 
allocate both processor and memory resources. The 
demand from applications for resources is dynamic and 
cannot be determined a priori. Since the objective is to 
optimise the use of the processors, these processors 
should not be involved in resource management. Better 
ways of determining how to allocate resources are 
needed and the task can be delegated to a separate unit. 
So our third requirement is that the computational model 
should separate resource management and the 
processing of steps in the execution cycle and have 
different hardware circuits for these functions.  

A computation is made up of a number of different 
steps: identifying the operation to perform, determining 
the data involved, performing the operation, and 
determining what to do with the result. Further there are 
additional tasks such as input and output of data. If each 
of these steps could be carried out independently then (1) 
the circuitry for each could be optimally used, (2) the 
complexity of the circuits could be considerably reduced 
(not have to synchronise with the clock), (3) the wire 
lengths within circuits can be reduced as each compo-
nent is self-contained, facilitating increased speeds at 
lower temperatures and (4) where there is larger demand 
for some components these can be duplicated. 

Memory access for both instructions and data should 
not impact on the performance of the CPU. In particular, 

an application should not have to wait because required 
instructions or data are not in memory. An address 
access costs more than a register access, both in time and 
hardware, and should be avoided. So, the fourth 
desirable attribute is that the computational model 
should be able to provide the processing circuits with 
what they need “just-in-time”. 

One factor often overlooked in discussions of 
computational models is the cost of developing and 
maintaining software. Operating systems, utilities and 
development tools are complex so that their development 
requires considerable investment in time and skilled 
programmers. Optimising these tools to get the best 
hardware performance for a given application requires 
considerable skill and experimentation. When 
performance is critical, each software application needs 
to be tailored and this requires an in-depth understanding 
of the hardware, the operating system, utilities and 
development tools on the part of the programmer. In 
addition high performance can often not be achieved 
without modifying program code for specific instances 
of hardware and operating system. Programming that 
requires temporal reasoning and the ability to imagine all 
the possible states of a system requires high level 
cognitive skills that are in short supply. So, the fifth 
desirable attribute is a computational model that 
simplifies programming and optimisation of programs. 

We have discussed several features of the von 
Neumann model that result in vulnerabilities. An 
incorrect index value can result in data or code being 
corrupted, whether accidentally or maliciously. Of 
concern is that such failures often go undetected with 
unknown consequences. So, the sixth and final desirable 
feature is that the computational model should result in 
robust software that is not vulnerable to errors in the 
code or to attack. In particular these vulnerabilities can 
be avoided if code and data cannot be changed during 
execution. 

The next section explores whether it is possible to 
design an alternative computational model that has these 
features. 

ARE THERE ALTERNATIVE  
COMPUTATIONAL MODELS? 

It is easy to find fault with a system and more 
difficult to propose alternatives. However in this case a 
computational model already exists without the 
identified weaknesses that can form the basis for an 
alternative architecture. This paper compares the 
instruction and address-based computational model with 
the natural way in which people compute. I argue that 
the semantic information that people associate with the 
elements of computation could be mimicked to gain 
efficiencies in computer architecture. 

C. The broad principles of the model 
Space limitations prevent a full description of the 

implementation of the model, so the paper describes the 
principles and outlines the implementation. 
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The one alternative computational model is simple, 
manual arithmetic calculation. Simple mathematical 
notation has been used to describe such calculation. For 
example, the sum of a series of numbers can be 
expressed as: 

s0=0, si+1=si+ni 

(This expression allows the computation of any set of 
numbers, even an unlimited set.) Given a set of numbers: 

n0=5, n1=3, n2=-4 

the computation can be done as follows:  

s0=0, s1=s0+n0=0+5=5, s2=s1+n1=5+3=8,  
s3=s2+n2=8+(-4)=4 

The computation described relies on:  
• a generalised relation si+1=si+ni that holds for a class 

of variables; 
• variable identifiers (in this case s and n) used to 

determine which generalised relation applies to the 
variable; 

• variable indices used to instantiate specific variables; 
• a value associated with each variable, for example the 

value 3 with the variable n1; 
• each variable having only one value; so that n1 is only 

ever 3 and does not take on other values as it would it 
an instruction-based program; 

• the relating of variables expressed in a relation; and 
• the computation of a result using the relation. 

 
To automate such a computation would require: 

• a means to record generalised relations, 
• a means to identify (a possibly infinite number of) 

variables and their associated values, 
• some way of identifying the relations that a variable is 

part of,  
• a way to compute the operations in the relation; and  
• some process that drives the computation in a similar 

way to the instruction cycle. 
In this model a variable is not a place in memory. 

Rather a variable consists of an identifier (possibly 
including an index), and a value. Variables become 
available when their identifiers and values are known. 
Each variable can have only one value throughout the 
execution of the program. This means that each variable 
identifier is associated with something in the problem 
domain. The variable identifier thus tells us about that 
thing in the problem domain, effectively associating 
semantic information with the value. It may be helpful to 
think of a variable in the mathematical sense, of an 
element in a domain that has defined relationships with 
other elements. 

This model does not have instructions. Rather the 
process is driven by which variables are available at any 
given time and which relations the variables are part of. 
To automate the manual process, variables (with their 
values) are “processed” as they become available. Each 
variable identifier is matched with the relations it forms 

part of. If all the necessary variables for a defined 
relation are available the result is calculated and 
becomes available as a new variable. Once a variable has 
been processed for all the relations that it is part of, it is 
discarded. 

The inherent parallelism is that any number of 
variables can be processed at the same time. As soon as 
the variables for any relation are available, the result can 
be computed. 

D. Accumulating variables for a relation 
For any particular relation, all the variables needed 

may not become available at the same time. The design 
challenge for the architecture is to accumulate the 
variables that form part of a relation so that once all the 
variables (with their values) are available, the 
computation can be carried out. This section argues that 
all relations can be reduced to unary, binary or indexed 
relations and gives examples of how this accumulation 
could be done for each of these three cases. (Selection, 
which is required for Turing completeness, can also be 
reduced to a binary operation, but this is beyond the 
scope of the paper.) 

Like with conventional compilers and computers, a 
relation can be broken up into simple relations consisting 
of a single operator with one or two operands [2]. In this 
way, the problem is simplified by only having to deal 
with relations that consist of unary or binary operations. 
The unary operations are straight-forward as the 
operation is applied to only the variable currently being 
processed and there is no need to identify additional 
variables. The operand is applied to value of the variable 
being processed and a new variable is created. For 
example, given the relation n=−p and the variable p=5, 
when the variable p is processed, the identifier p is used 
to establish that the variable is used in the relation n=−p 
and a new variable n=−5 is created by applying − to the 
value 5 of p. The resulting variable, n=5 is now available 
to be processed. 

The binary operation is more complex. To compute 
the relation v=a+b, the values of the two variables a and 
b need to be available. However variables may become 
available independently of one another; there is no 
synchronising of the variables. One approach is to get rid 
of operations requiring two operands and replace them 
with unary operations that apply to a tuple t=[a;b]. The 
relation v=a+b can now be expressed as v=+t. We create 
the tuple t using two operations: ⋉ to create the left part 
of the tuple and ⋊ to create the right part of the tuple. So 
we also have the relations t=⋉a and t=⋊b. 

So when the variable a is processed, it forms the left 
part of a tuple t and when the variable b is processed it 
forms the right part of the tuple t. When both a and b 
have been processed and both parts of the tuple t exist, 
the operation can be applied and the relation computed. 
For example, with the above relations and the variables 
b=5 and a=3 processed one after the other, the result is:  
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Variable Relation Partial tuple Variable 

b=5 t=⋊b t=[;5]  

a=3 t=⋉a t=[3;] t=[3;5] 

t=[3;5] v=+t  v=8 

 
The matching of the partial tuples is handled by a 

dedicated tuple processor. This approach allows the two 
operands to be processed in any order and the variable 
identifier can be used to match the two halves. 

A significant difference in this model is that variables 
are associated with a single value for the duration of the 
program. The requirement that variables each have only 
one value means that we need to have an unlimited 
number of variables to express programs that are non-
trivial. To achieve this, indices are introduced as shown 
in the initial example. For this reason a variable 
identifier may have an index associated with it and we 
need to be able to increment the indices. Note that the 
index (if there is one) is part of the variable and not a 
separate variable. The sum expressed as si+1=si+ni can be 
broken down into the following relations:  

s′i = ⋉si 
s′i = ⋊ni 
s″i = +s′i 

si+1 = [+1] s″i 
where [+1] is the operation to add 1 to the index.  

Given the variable values above, the computation can 
proceed as follows:  

 
Variable Relation Partial tuple Variable 

s0 = 0 s′i = ⋉si s′0 = [0,]  
n0 = 5 s′i = ⋊ni s′0 = [0,]  
  s′0 [,5] s′0 = [0,5] 

s′0 [0,5] s″i = +s′i  s″0 = 5 

s″0 = 5 si+1 = 
[+1]s″i  s1 = 5 

s1 = 5 s′i = ⋉si s′1 = [5,]  
n1 = 3 s′i = ⋊ni s′1 = [5,]  
  s′1 [,3] s′1 = [5,3] 
s′1 = [5,3] s″i = +s′i  s″1 = 8 

s″1 = 8 si+1 = 
[+1]s″i  s2 = 8 

s2 = 8 s′i = ⋉si s′2 = [8,]  
n2 = -4  s′i = ⋊ni s′2 = [8,]  
  s′2 [,-4] s′2 = [8,-4] 
s′2 = [8,-4] s″i = +s′i  s″2 = 4 

s″2 = 4 si+1 = [+1] 
s″i  s3 = 4 

 
Note that the variables can be processed in any order. 

The sequence above is to aid with following the 
computation process. Note too that the indices in the 

relations play no role in the computation and the 
relations could equally be expressed as: 

s′ = ⋉s 
s′ = ⋊n 
s″ = +s′ 

s = [+1] s″ 

E. The computational cycle 
The computational cycle has similarities to the 

traditional instruction cycle but the steps are decoupled 
from one another. The steps are: 
• get the next available variable, including the unique 

identifier and value (analogous to getting the data) 
• get the relations that apply to the variable (analogous 

to getting an instruction) 
• apply the operation of each relation to the value to 

create a new variable (analogous to performing the 
instruction)  

• store the newly created variable (analogous to storing 
the result)  
The architecture would then need the following four 

units to perform these functions:  
The Mapping unit pops a variable (x, i, 5) off a 

variable queue and uses the identifier x to identify a list 
of relations that involve this variable. For each relation 
(for example v=-x), an augmented variable is created 
which consists of the identifier of the new variable to be 
created by the relation (v), the index i of the popped 
variable, the value of the variable (5) and the operation 
of the relation (-). (In the example given, the augmented 
variable would be (v, i, 5, -).) Depending on the 
operation, the augmented variable is then pushed onto 
the evaluation queue, the tuple queue or the index queue 
to be dealt with by one of the units described below. 

The Evaluation unit deals with operations on variable 
values. It pops an augmented variable off the evaluation 
queue and applies the operation to the value. If the result 
is defined, a new variable is created with the identifier 
and index of the augmented variable, and the value 
resulting from the operation. (In the example, (v, i, -5)). 
This variable is pushed onto the variable queue for 
processing by the mapping unit.  

The Index unit deals with operations on indices. It 
pops an augmented variable (such as (v, 3, 5, [+1])) off 
the index queue and applies the (index) operation to the 
index. If the result is defined, a new variable is created 
with the identifier and value of the augmented variable, 
and the index resulting from the (index) operation. (In 
the example, (v, 4, 5).) The variable is pushed onto the 
variable queue for processing by the mapping unit.  

The Tuple unit deals with the creation and matching of 
tuples. It pops an augmented variable off the tuple queue 
(for example (v, i, 5, ⋊)). If the matching tuple does not 
exist (within the Tuple unit’s hash table), it creates a 
variable with a partial tuple (in this case (v, i, [;5]) which 
remains in the Tuple unit (stored in a hash table) to be 
matched in the future. If the matching tuple exists (for 
example vi=[3;]), it creates a variable with identifier and 
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index of the augmented variable and a tuple made up of 
the values of the two matching tuples. (In the example,  
(v, i, [3,5]).) The variable is pushed onto the variable 
queue for processing by the mapping unit. 

The design deliberately enables each of these units to 
operate independently of each other, thus achieving the 
desired decoupling of the execution steps. Fig. 1 gives a 
schematic view of how such a model can be 
implemented.  

 

 
 

Fig. 1.  Schematic of the proposed architecture 
 
Indices can be used to handle abstraction and 

complex flexible data structures. Input can be handled by 
another unit that interfaces with the input device and 
translates the input into variables that are pushed onto 
the variable queue. Output variables are picked up by an 
output unit and translated into the correct format for the 
output device. A more complete description of the 
implementation and simulations of its functioning can be 
found elsewhere [10, 11]. The model has shown promise 
with experimentation on an emulation which has limited 
operations. High degrees of parallelism were achieved 
and no unexpected pitfalls emerged [12]. 

In this model a program is expressed as an unordered 
list of relations between variables. This simplifies 
programming as the programmer does not need to be 
concerned with the timing of execution and states. The 
use of queues means that processing takes place as soon 
as the variables become available to process, giving us 
the desired “just-in-time” processing. 

The purpose of this paper is to argue for exploring 
such new models of computation rather than giving the 
full details of the implementation. The following section 
discusses how the suggested model avoids the 
weaknesses identified in the instruction and address-
based model, the objective being to show that these 
weaknesses are not present in all computational models 
and architectures.  

THE PERFORMANCE POTENTIAL  
OF ALTERNATIVE MODELS 

The argument is that the instruction and address-
based model has inherent weaknesses which make it 

unsuitable for high performance computing. Six 
properties were identified that are desirable for high 
performance computing and the previous section 
presented a model that has these properties. In this 
section an assessment is made as to the potential of the 
proposed model to meet the needs of high performance 
computing. As identified in the beginning of Section 4, 
the considerations are: (1) memory management, (2) 
parallelism, (3) use of the processor, (4) running costs, 
(5) cost of design and (6) software costs and reliability. 

F. Memory management 
First, the problems related to memory management 

include (a) inefficient use of memory, (b) the cost of 
bottlenecks in moving data around, and (c) an additional 
workload for the central processing unit to manage data. 

The proposed variable-based model uses memory 
more efficiently because only active variables are stored. 
No storage is allocated to undefined variables or to 
variables that have been processed and are no longer 
required.  

A limited number of active variables need to be kept 
in high speed memory. As the gap between processing 
times and memory access times widens, it is necessary to 
use high speed caches which can match processor 
speeds. This model only requires buffers for the front 
and back of the variable queue to handle variables about 
to be processed, and the newly created variables about to 
be stored. The sizes of these buffers are minimal as they 
only have to be large enough to handle the transfer. This 
reduces the cache and memory sizes. Data bottlenecks 
are avoided by ensuring that only data about to be 
processed is transferred to high speed memory.  

The model avoids the need for interrupts. In addition, 
the queue of variables can contain variables from 
different tasks with the task information stored as part of 
the semantic information in each variable, thus avoiding 
the need for time-slicing. 

The instruction and address-based model requires a 
complex memory hierarchy to handle the virtual memory 
model, involving different levels of caches, memory and 
secondary storage. Blocks of data are transferred in and 
out of these layers with additional costs if the block has 
to be written back. Large amounts of data that are not 
required are unnecessarily moved around because access 
to a variable in a block requires the whole block to be 
transferred into cache. An interrupt or a time slice 
inevitably results in transferring blocks of data across the 
memory hierarchy. 

In the proposed variable-based model, the atomic 
elements of a data structure are separate variables and 
their relationship to the data structure is contained in the 
semantic information that forms part of the variable 
identifier. Each of the atomic components that make up 
the structure is processed independently. Thus there is no 
need for data structures such as an array to be stored as a 
continuous block of memory. Nor does the structure 
need to remain in memory from when one element of the 
structure is defined until there are no remaining elements 
that may be referenced. 
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The atomic variables in the proposed model contain 
structural information of more complex data structures in 
the semantic component of the variable. Unlike the 
instruction and address-based model, where structure is 
represented either using pointers or linear positional 
information. The variable-based model thus avoids the 
central processing unit overhead of managing dynamic 
space, as well as calculating the address of components 
in the structure. 

G. Parallelism and use of processors 
There is broad agreement that any architecture that is 

to meet the demands of large data and intensive 
computation will need high degrees of parallelism and 
highly efficient use of processors. Optimal levels of 
parallelism will be attained if processing can be assigned 
at a low level of granularity to available processors 
during execution.  

The instruction- and address-based model is an 
inherently sequential process. Parallelism is achieved by 
breaking up the computation into a number of concurrent 
sequential processes. These processes require 
intervention by the operating system to ensure each 
process is given access to a processor and to handle 
communication between processes, be it message 
passing or shared memory. Processes need to be 
allocated to a specific processor. The code determines 
the order computations take place, the memory 
allocation and the use of memory.  All of this adds 
complexity to programming and the execution of parallel 
programs and parallel processing cannot be optimised 
during execution. 

The proposed variable-based model is inherently 
parallel because it operates non-sequentially and 
processing is at the level of each variable. Variables can 
be evaluated, as they become available, by any available 
processor, making the parallelism fine-grained. The 
mechanism allocates resources, rather than a program, 
and no intervention is required by the operating system. 

In this model, a program is a specification of 
relationships between variables expressed in simple 
mathematical notation. Programming consists of 
describing relations between variables. The programmer 
does not have to define the sequence of execution or 
specify the allocation of resources. There is no need to 
break a program into parallel tasks with complex 
synchronisation mechanisms between them, and the 
programmer does not need to concern themselves with 
the architecture or configuration of processors. 

A major focus in improving the performance of 
current architectures has been on improving the 
execution cycle. The steps of getting the instruction, 
getting the data, performing the operation, saving the 
result and updating the program counter need to done in 
order and synchronised by the clock cycle. These steps 
are required in order to combine the instruction with the 
data before the instruction can be performed. The 
instruction is determined by the program counter, just 
before the instruction is performed, and the necessary 

data identified once the instruction is loaded. These 
phases have to be synchronised to maintain the 
instruction pipeline, hence the clock is critical. 

The variable based model decouples the different 
functions involved in the processing of a variable. The 
functions of mapping, evaluating, indexing, forming 
tuples and input and output can proceed independently 
and in parallel with each other; synchronisation is 
handled by the system. So the model is inherently 
parallel in terms of its design as well as in terms of the 
execution of programs. 

H. Costs and other considerations 
Increasing the speed of the clock increases power 

consumption, cost of manufacture, and running costs, 
while reducing reliability. Not having to synchronise 
phases of the execution cycle with a clock avoids delays 
when one part of the cycle takes longer than the other. It 
also allows the architecture to have multiple units for 
each of the phases executing in parallel. Both of these 
aspects increase the performance on the execution cycle 
without having to increase an overall clock speed. This 
has impacts on the reliability of the hardware and energy 
consumption as well the cost of the hardware and 
running costs.  

Because processing is handled by four dedicated 
processing units, each unit can designed independently 
of the rest. This simplifies the design and allows for 
performance optimisation within each unit (including 
shorter connection lengths). There is no need for 
complex synchronisation between units, which is 
handled by the variable queue. Only limited use is made 
of high speed cache, allocated to store the front of the 
queue of variables about to be processed. 

The proposed model simplifies programming (and 
thus reduces the cost of programming) by reducing it to 
the specification of relationships between variables. This 
makes the programming task much simpler because the 
programmer does not have to specify the order of 
execution or how resources are allocated. Reasoning 
about static relationships is simpler; the programmer no 
longer has to be concerned with state and temporal 
reasoning. There is no need to explicitly optimise code 
for parallel execution.  

Current architectures have a major weakness in that 
they are vulnerable to accidental and malicious 
corruption of memory. Perhaps even worse are the 
unknown consequences of undetected pointer and index 
errors. The proposed model avoids such problems 
because it is not instruction driven. Variable-driven 
processing avoids these vulnerabilities because it is not 
possible to incorrectly alter an instruction or value, either 
accidentally or maliciously. The identifier of a variable 
determines how the variable is processed. An operation 
can only result in a new variable being created, so no 
code can be generated and no other variable can be 
modified as each variable is processed. The operating 
system functions are not performed by the units that 
process variables. Thus the proposed model saves on the 
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cost of identifying such errors as well as the cost of the 
consequences. It is a safer model of computing. 

The variable based model illustrates that the 
weaknesses of the instruction- address-based model are 
not inevitable. Overcoming these weaknesses would 
have considerable performance benefits for high 
performance computing. This section discusses one 
possible model that has the potential to address the 
identified weaknesses. 

POTENTIAL PITFALLS  
AND SIGNS OF SUCCESS 

There are two aspects of the variable-based model 
presented here that have performance implications: the 
matching of tuples and managing indices.  

Forming tuples is a critical component in being able 
to move away from addressing, providing the critical 
intermediate step to form variables for binary operations. 
The matching of tuples is likely to be of the same order 
as that of the algorithm used in the computation. The 
problem occurs when having to pair a newly created 
unmatched tuple against an excessive number of 
unmatched tuples. Work has been done to address this 
using grouped tuples and distributing the matching task.  

The model also requires that there be no limit on the 
number of indices that can be attached to the semantic 
component of variables. This enables complex data 
structures and high levels of abstraction. Without going 
into too much detail, it is possible to manage multiple 
indicies using chains. 

The model has shown promise when emulated with 
limited operations [12]. High degrees of parallelism were 
achieved and no unexpected pitfalls emerged. In 
comparing a matrix multiplication program written in C 
to run in parallel on multiple processors with an 
equivalent variable-based program on the emulation, the 
former has to perform more instructions than the latter 
performs operations.  

CONCLUSION 

Some, such as the Berkeley group, advocate major 
change in computing paradigms as follows:  

Since real world applications are naturally 
parallel and hardware is naturally parallel, 
what we need is a programming model, 
system software, and a supporting archi-
tecture that are naturally parallel. Re-
searchers have the rare opportunity to re-
invent these cornerstones of computing, 
provided they simplify the efficient prog-
ramming of highly parallel systems. [1] 

 

Yet we see little evidence of this challenge being 
taken up. Instead considerable effort and resources are 
going into improving the instruction and address-based 
model. This suggests that either there is a belief that 
significant improvements can still be made or that the 
predominant belief is that there is no alternative. 
However researchers continue to identify and analyse 

weaknesses of the dominant model and to argue that it 
has hard limitations and alternative models need to be 
explored. 

Proposing a radical departure from current models of 
computing is not an easy task. Investments in the current 
architecture in terms of current research and 
development, as well as the installed base of hardware 
and software are overwhelming and will be slow to 
change [1]. However this ought not to deter research into 
alternatives that may be needed to make progress in the 
future.  

The instruction and address-based model is so 
entrenched in our thinking that it is difficult to conceive 
of alternatives. This paper attempts to think more freely 
about computing by first identifying the desirable 
features of a computational model and architecture for 
high performance computing, and then exploring the 
design of a model that exhibits these properties.  

The proposed model is non-sequential, allowing 
immediate computation of any operation whose operands 
are defined, putting the focus on processing variables 
rather than instructions. The paper gives a brief outline 
of how such a model might work. More detailed 
information about the model, as well as the results of 
emulation experiments are described elsewhere [10–12]. 
The proposed model does not exhibit the weaknesses of 
the von Neumann model. The two models are compared 
in terms of memory management, parallelism and the 
use of processors, and issues of cost, to argue that the 
proposed model has the potential to be better suited for 
high-performance computing.  

Being able to come up with an alternative model that 
has the desirable attributes shows that there are 
alternatives to the instruction and address-based model 
that are worth exploring. At this stage it is not possible to 
argue that the model can provide the basis for alternative 
architectures that will out-perform current architectures. 
It is possible that weaknesses in this model will emerge 
that may outweigh the benefits. Considerably more work 
will be needed to develop the model more fully, but 
early attempts at emulating its functioning have been 
promising. 

The conclusion is that the von Neumann model is not 
the most appropriate model to address the needs of large 
data and high performance computing because of its 
inherent weaknesses. However it is possible to design 
computational models and computing architectures that 
do not have the same inherent weaknesses, with the 
potential to better meet the processing needs that science 
is expecting from computing. Such alternatives are worth 
exploring further. 
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