DC Field | Value | Language |
dc.contributor.author | Дивак, Микола | |
dc.contributor.author | Олійник, Ірина | |
dc.contributor.author | Dyvak, Mykola | |
dc.contributor.author | Oliynyk, Iryna | |
dc.date.accessioned | 2018-06-07T11:41:55Z | - |
dc.date.available | 2018-06-07T11:41:55Z | - |
dc.date.created | 2017-02-19 | |
dc.date.issued | 2017-02-19 | |
dc.identifier.citation | Dyvak M. Estimation method for a set of solutions to interval system of linear algebraic equationswith optimized «saturated block» selection procedure / Mykola Dyvak, Iryna Oliynyk // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 7. — No 1. — P. 17–24. | |
dc.identifier.issn | 2224-0977 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/41498 | - |
dc.description.abstract | Обґрунтовано необхідність застосування нового
методу формування набору базових рівнянь у задачі
локалізації розв’язків інтервальної системи лінійних
алгебричних рівнянь (ІСЛАР) на основі “насиченого
блоку”, який ґрунтується на розв’язуванні оптимізаційної
задачі.
За критерій обрано мінімізацію максимальної похибки
прогнозування інтервальними моделями, параметри яких
належать області локалізації розв’язків ІСЛАР.
Проведено порівняльний аналіз ефективності запро-
понованого методу пошуку оптимального “насиченого
блоку”, порівняно із методами стохастичного пошуку,
зокрема, з лінійною тактикою та за найкращою спробою.
Показано його суттєву перевагу за критерієм мінімуму
обчислювальної складності. | |
dc.description.abstract | The paper substantiates the necessity of
applying a new method for the formation of a set of basic
equations in the problem of localizing solutions to an
interval system of linear algebraic equations (ISLAE) on
the basis of a “saturated block”. The method is based on
solving the problem of optimization. Th e minimization of
the maximal prediction error by using interval models the
parameters of which belong to the localization area of
ISLAE solutions is chosen as a criterion. A comparative
analysis of the effectiveness of the proposed method for
finding the optimal “saturated block” and the methods of
stochastic search, in particular with linear tactics and by
best attempt is conducted. A significant advantage of the
proposed method by the criterion of minimum
computational complexity is shown | |
dc.format.extent | 17-24 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Computational Problems of Electrical Engineering, 1 (7), 2017 | |
dc.subject | identification | |
dc.subject | interval analysis | |
dc.subject | solutions localization | |
dc.subject | “saturated block” of interval system of linear algebraic equations | |
dc.subject | stochastic method | |
dc.title | Estimation method for a set of solutions to interval system of linear algebraic equationswith optimized «saturated block» selection procedure | |
dc.title.alternative | Метод оцінюваннямножини розв’язків інтервальної системи лінійних алгебричних рівнянь з оптимізованою процедурою вибору «насиченого блоку» | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2017 | |
dc.rights.holder | © Dyvak M., Oliynyk I., 2017 | |
dc.contributor.affiliation | Ternopil National Economic University | |
dc.format.pages | 8 | |
dc.identifier.citationen | Dyvak M. Estimation method for a set of solutions to interval system of linear algebraic equationswith optimized «saturated block» selection procedure / Mykola Dyvak, Iryna Oliynyk // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 7. — No 1. — P. 17–24. | |
dc.relation.references | [1] M. Dyvak, Tasks of mathematical modeling the static systems with interval data. Ternopil, Ukraine, 2011. (Ukrainian) | |
dc.relation.references | [2] G. Alefeld and J. Herzberger, Introduction to interval computations, Computer Science and Applied Mathematics. New York, USA: Academic Press, Inc. Harcourt Brace Jovanovich Publishers, 1983. | |
dc.relation.references | [3] S.P. Shary, Algebraic Approach to the Interval Linear Static Identification, Tolerance, and Control Problems, or One More Application of Kaucher Arithmetic, Reliable Computing, vol. 2, no. 1, pp. 3–33, 1996. | |
dc.relation.references | [4] M. Dyvak, V. Manzhula and O. Kozak, “New method tolerance estimation of the parameters set of interval model based on saturated block of ISLAE”, in Proc. IX–th International Conference CADSM’2007, pp. 376-379, Lviv–Polyana, Ukraine, 2007. | |
dc.relation.references | [5] L. Rastrigin, Adaptation of complex system. Riga, Latvia: Zinatne, 1981. (Russian) | |
dc.relation.references | [6] L. Rastrigin, A random search. Moscow, Russia: Znanie, 1979. (Russian) | |
dc.relation.references | [7] L. Rastrigin, Theory and application of random search, Institute of electronics and computers equipment, Riga, Latvia, 1969. (Russian) | |
dc.relation.references | [8] L. Rastrigin, Modern principles of management of complex objects. Moscow, Russia: Owls. radio, 1980. (Russian) | |
dc.relation.references | [9] E. Walter and L. Pronzato, Identification of parametric model from experimental data, London, Berlin, Heidelberg, New York, Paris, Tokyo: Springer, 1997, 413 p. | |
dc.relation.references | [10] C. F. J. Wu and M. S. Hamada, Experiments: Planning, Analysis and Optimization, Wiley, 2009. | |
dc.relation.references | [11] M. Dyvak, I. Oliynyk, and P. Stakhiv, “Method of reduction for interval system of linear algebraic equations and its application to modeling of the electric power generated by a small hydroelectric power station”, in Proc. 17th International Conference on Computational Problems of Electrical Engineering, CPEE’ 2016, Sandomierz, Poland, 2016. | |
dc.relation.references | [12] M. Dyvak and I. Oliynyk, “Method of formation of an optimal “saturated block” in the task of localization of solutions to interval system of linear algebraic equations”, Inductive Modeling of Complex System, no. 8, pp. 79–99, 2016. (Ukrainian) | |
dc.relation.references | [13] M. Dyvak, I. Oliynyk, V. Manzhula, and R. Shevchuk, “Stochastic method of forming an optimal “saturated block” in the localization task of solutions to interval system of linear algebraic equations”, in Proc. 14th International Conference CADSM (The Experience of Designing and Application of CAD Systems in Microelectronics), pp. 367–371, Lviv, Ukraine, 2017. | |
dc.relation.referencesen | [1] M. Dyvak, Tasks of mathematical modeling the static systems with interval data. Ternopil, Ukraine, 2011. (Ukrainian) | |
dc.relation.referencesen | [2] G. Alefeld and J. Herzberger, Introduction to interval computations, Computer Science and Applied Mathematics. New York, USA: Academic Press, Inc. Harcourt Brace Jovanovich Publishers, 1983. | |
dc.relation.referencesen | [3] S.P. Shary, Algebraic Approach to the Interval Linear Static Identification, Tolerance, and Control Problems, or One More Application of Kaucher Arithmetic, Reliable Computing, vol. 2, no. 1, pp. 3–33, 1996. | |
dc.relation.referencesen | [4] M. Dyvak, V. Manzhula and O. Kozak, "New method tolerance estimation of the parameters set of interval model based on saturated block of ISLAE", in Proc. IX–th International Conference CADSM’2007, pp. 376-379, Lviv–Polyana, Ukraine, 2007. | |
dc.relation.referencesen | [5] L. Rastrigin, Adaptation of complex system. Riga, Latvia: Zinatne, 1981. (Russian) | |
dc.relation.referencesen | [6] L. Rastrigin, A random search. Moscow, Russia: Znanie, 1979. (Russian) | |
dc.relation.referencesen | [7] L. Rastrigin, Theory and application of random search, Institute of electronics and computers equipment, Riga, Latvia, 1969. (Russian) | |
dc.relation.referencesen | [8] L. Rastrigin, Modern principles of management of complex objects. Moscow, Russia: Owls. radio, 1980. (Russian) | |
dc.relation.referencesen | [9] E. Walter and L. Pronzato, Identification of parametric model from experimental data, London, Berlin, Heidelberg, New York, Paris, Tokyo: Springer, 1997, 413 p. | |
dc.relation.referencesen | [10] C. F. J. Wu and M. S. Hamada, Experiments: Planning, Analysis and Optimization, Wiley, 2009. | |
dc.relation.referencesen | [11] M. Dyvak, I. Oliynyk, and P. Stakhiv, "Method of reduction for interval system of linear algebraic equations and its application to modeling of the electric power generated by a small hydroelectric power station", in Proc. 17th International Conference on Computational Problems of Electrical Engineering, CPEE’ 2016, Sandomierz, Poland, 2016. | |
dc.relation.referencesen | [12] M. Dyvak and I. Oliynyk, "Method of formation of an optimal "saturated block" in the task of localization of solutions to interval system of linear algebraic equations", Inductive Modeling of Complex System, no. 8, pp. 79–99, 2016. (Ukrainian) | |
dc.relation.referencesen | [13] M. Dyvak, I. Oliynyk, V. Manzhula, and R. Shevchuk, "Stochastic method of forming an optimal "saturated block" in the localization task of solutions to interval system of linear algebraic equations", in Proc. 14th International Conference CADSM (The Experience of Designing and Application of CAD Systems in Microelectronics), pp. 367–371, Lviv, Ukraine, 2017. | |
dc.citation.volume | 7 | |
dc.citation.issue | 1 | |
dc.citation.spage | 17 | |
dc.citation.epage | 24 | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Computational Problems Of Electrical Engineering. – 2017 – Vol. 7, No. 1
|