https://oldena.lpnu.ua/handle/ntb/26954
Title: | Vibrations of axially compressed sandwich beam due to a moving force |
Authors: | Misiurek, Katarzyna Śniady, Paweł |
Bibliographic description (Ukraine): | Misiurek K. Vibrations of axially compressed sandwich beam due to a moving force / Katarzyna Misiurek, Paweł Śniady // Геодезія, архітектура та будівництво : матеріали V Міжнародної конференції молодих вчених GAC-2013, 21–23 листопада 2013 р., Україна, Львів / Національний університет "Львівська політехніка". – Львів : Видавництво Львівської політехніки, 2013. – С. 92–97. – (4-й Міжнародний молодіжний фестиваль науки "Litteris et Artibus"). – Bibliography: 18 titles. |
Issue Date: | 2013 |
Publisher: | Видавництво Львівської політехніки |
Keywords: | Vibration sandwich beam moving force closed solutions |
Abstract: | The dynamic response of a finite, simply supported axially compressed sandwich beam subject to a force moving with a constant velocity is investigated. The classical solution has a form of an infinite series. The main goal of this paper is to present that the aperiodic part of the solution can be presented in a closed form instead of an infinite series. The shown method of finding the solution when the form is closed is based on the observation that the solution of the system of partial differential equations in the form of an infinite series is also a solution of an appropriate system of ordinary differential equations. The closed solutions take different forms depending on the velocity v of the moving force is smaller or bigger than the shear-wave velocity of the beam. The dynamic response of the sandwich beam under moving force is very important solution. It is because that it can be used also in order to find the solution for other types of moving loads. |
URI: | https://ena.lpnu.ua/handle/ntb/26954 |
Content type: | Article |
Appears in Collections: | Геодезія, архітектура та будівництво (GAC-2013). – 2013 р. |
File | Description | Size | Format | |
---|---|---|---|---|
032-092-097.pdf | 446.81 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.