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Abstract – The dynamic response of a finite, simply 
supported axially compressed sandwich beam subject to a 
force moving with a constant velocity is investigated. The 
classical solution has a form of an infinite series. The main 
goal of this paper is to present that the aperiodic part of the 
solution can be presented in a closed form instead of an 
infinite series. The shown method of finding the solution when 
the form is closed is based on the observation that the solution 
of the system of partial differential equations in the form of an 
infinite series is also a solution of an appropriate system of 
ordinary differential equations. The closed solutions take 
different forms depending on the velocity v  of the moving 
force is smaller or bigger than the shear-wave velocity of the 
beam. The dynamic response of the sandwich beam under 
moving force is very important solution. It is because that it 
can be used also in order to find the solution for other types of 
moving loads. 
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І. Introduction 
Over the past decades the sandwich beams had 

widespread applications in the fields of aerospace, 
automotive, marine, civil and mechanical engineering. 
Sandwich construction offers high strength to weight 
ratios, as well as good buckling resistance, formability to 
complex shapes and easy reparability. Due to their many 
advantages over traditional materials, dynamics response 
of the sandwich beam has been studied by many authors 
in the recent decades [1]. The problem of a dynamic 
response of a structure subjected to moving loads is very 
important and interesting. Many authors have considered 
the problem of vibrations in structural engineering, 
resulting from the moving load, because it has a 
significant importance for practice, for example in bridge 
designing and also is interesting from theoretical point of 
view. Different types of structures and girders like beams, 
plates, shells, frames have been considered. Also different 
models of moving loads have been assumed [2]. 
Deterministic and stochastic approaches have been 
considered [3]. The problem of vibration of the laminate 
plates, sandwich and graded beams has been presented in 
the papers [4-9].  

In this paper is concerned the problem of dynamic 
response of a finite, simply supported, axially compressed 
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sandwich beam subject to a force moving with a constant 
velocity. The classical solution receive a form of an 
infinite series. The main goal of this paper is to present 
that the aperiodic part of the solution can be introduced in 
a closed form instead of an infinite series. By making use 
of the method of superimposed deflections Z. 
Kączkowski [10] has shown for a simply supported Euler-
Bernoulli beam that it is possible to present the aperiodic 
part of the solution in a closed form. Next Z. Reipert 
obtained a closed solution for a beam with arbitrary 
boundary conditions [11] and for a frame [12]. In this 
paper is used a different method to get the solutions in the 
closed form [13], [14]. The shown method of finding the 
solution when the form is closed is based on the 
observation that the solution of the system of partial 
differential equations in the form of an infinite series is 
also a solution of an appropriate system of ordinary 
differential equations. The dynamic response of the 
sandwich beam under moving force is very important 
solution. It is because that it can be used also in order to 
find the solution for other types of moving loads. 

 ІІ. Statement of the problem. 
Governing equations 

In this paper is considered finite, simple supported, 
axially compressed sandwich beam with a rectangular 
cross-section consisting of two thin, stiff, elastic sheets 
and a thick core layer. A further key assumptions are 
made at a time when developing the differential equations 
of motions of a sandwich beam under load excitation: 
 the theory of linear elasticity applies, 
 transverse direct strains in the face sheets and core are  
negligible and hence, transverse displacements are the 
same for all points in a normal section, 
 the face sheets carry only axial forces, 
 the core carries only shear, 
 there is no slippage or delamination between the core 
and the face sheets, 
 only transverse inertia is taken into account, 
 the undamped vibrations are considered. 
 
The displacement and forces are shown on Figs.1, 2 
 

 
 

Fig. 1. Geometry of a sandwich beam section  
and internal forces 
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Fig. 2. Deformations and displacements  
in a sandwich beam section 

 
Taking into account equilibrium equations (equations of 
horizontal, vertical and moment equilibrium): 
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sheets and the core shear  

    
( , )

( , ) ,i
i i i

u x t
n x t E A

x





                         (5) 

( , )
( , )

w x t
x t

G x





  


 
 
 

             (6) 

and after some mathematical transformation one obtains a 
set of differential equations which describe vibrations of 
the sandwich beam in the form 
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1 ,E 2E  are the Young modulus of the upper and the 
lower sheets, G is the shear modulus of the beam core, 

1 ,A 2A are the areas of the sheets cross-sections, b is the 

beam width and   is the mass of the beam, 1 2,   are 

the masses of the sheets, c is the mass of the beam core. 
The quantity   denotes the harmonic average of the axial 

stiffnesses 1 1E A  and 2 2E A  of  the sheets. Taking into 

account Eq. (5) and that 2 1( , ) ( , )
( , )

u x t u x t
x t

d


   the 

axial force in the sheets is equalto: 
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Where  
11 .i

iN N
   

The boundary conditions for a simply supported beam 
have forms 

                           (0, ) ( , ) 0,w t w L t                  (10) 
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where L is the beam length. 

ІІІ. Vibration of the beam under  
moving force 

The vibrations of a sandwich beam excited by a point 
force P  moving with a constant velocity v  as it is show 
on Fig.3 are considered. 
In this case the load function in Eq. (7) receive the form 

                 ( , ) ( ),p x t P x vt                  (12) 

where δ(.)  is the Dirac delta. 
After introducing the dimensionless variables  

,
x
L

 
vt

T
L

 , [0,1],   [0,1]T        (13) 
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Fig. 3. Sandwich beam system under moving force 
 

the Eqs. (7), (8) take the forms 
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is the shear wave velocity of the beam.  
Dots denote differentiation with respect to the time .T  
The boundary conditions (10), (11) get the form 
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And the initial conditions have the form 
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The solutions of Eqs. (14,15) for boundary conditions 
(16,17) are assumed to be in the form of the sine and 
cosine series 
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After exchanging the expressions (19), (20) for equations 
(14), (15) and making use of the orthogonality method 
received the set of ordinary differential equations 
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is fulfilled then the solutions (24)-(29) tend to infinity. 
Thus the resonance velocity crv  is equal to 
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It should be noticed that the resonance velocity is less 
than the shear wave velocity of the beam ( )cr sv v . 

The functions ( , )Aw T  and ( , )A T  are aperiodic 
vibrations and satisfy the nonhomogeneous 
differential Eqs. (14)-(15) but do not satisfy the initial 
conditions of motion (18). These functions are free 
vibrations of the sandwich beam which satisfy the 
homogeneous differential Eqs. (14)-(15) 0( 0)P   and 
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together with the aperiodic, satisfy also functions of 
the initial conditions of motion (18). Next will be 
presented the aperiodic solutions ( , )Aw T  and 

( , )A T  given by the expressions (26) and (28) in 
closed forms. 
It should be noticed an important fact that these functions 
are solutions not only the system of partial differential 
system equations (14)-(15) but also the system of 
ordinary system equations (see [13], [14]) 
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for the boundary conditions (16)-(17). 
The variable T  in the equations (32) is the only 
parameter which describes the location of the moving 
force on the beam. The system of equations (32) has been 
created from the system of the partial differential 
equations (14)-(15) by changing differentiation with 
respect to the time T to differentiation with respect to the 
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After solving Eqs. (32) by using, for example, the Laplace 
transform received the functions ( , )Aw T  and 

( , )A T  in the closed form instead of series. The closed 
form of the solutions depends on the velocity of moving 
force. 
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In the case if 1s  ( )sv v the solutions have forms 
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The closed solution is particularly important if the axial 
forces in the sheets and the shear force in the core. If the 
velocity v  of the moving force is less than the shear wave 

velocity of the beam s

Gbd N
v




  ( 1),s   the 

axial force in the sheetscan be obtained from Eq. (9) and 
has the form 

1 ( ) ˆ ˆ( , ) ( , ) ( , ) ,
2 A s

d
n T N n T n T N

L d
 

  



         (41) 

where  
 

 
2

0 2 22 2
1

sin sin
( , )

(1 )[ ]
ns

s
n ns s

n T nd
n T Pb

L n a

  


  





 
 


(42)

 

for  T   

      
 

2
0 2

2

sin sin (1 )
( , ) ,

sin2 1A
s

P db a a T
n T

a aL
 








      (43) 

for  T   

       
 

2
0 2

2

sin (1 )sin
( , ) ,

sin2 1A
s

P db a aT
n T

a aL
 









    (44) 

 
Shear stress in the beam core can be received from Eq. (6) 
in the form 

            

1 ( , )
( , ) [ ( , )]

( , ) ( , ),A s

w T
T G T

L d
T T


  



   


 

 

           (45) 
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Where 
 

 

2
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1

sin sin
( , ) 2

(1 )[ ]
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s
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n T nGP
T
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  
 

  





 
 

       (46) 

for T      2

cos sin (1 )
( , ) ,

(1 )sinA
s

P a a T
T

bd a


 






       (47) 

for T    2

cos (1 )sin
( , ) ,

(1 )sinA
s

P a aT
T

bd a


 


 



       (48) 

 
If the velocity v  of the moving force is bigger than the 

shear wave velocity of the beam then 1s   and the 

aperiodic solutions for the axial force in the sheets and the 
shear stress in the beam core have forms 
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0 2 222
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for  T   
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for  T      
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for T 
2

cosh sinh (1 )
( , ) ,

( 1)sinh
o

A

s

GP a a T
T

L a


 



 

  
(53) 

for T   
0

2

cosh (1 )sinh
( , ) ,

( 1)sinhA
s

GP a aT
T

L a


 






  (54) 

Conclusion 
The dynamics response of a finite, simply supported, 

axially compressed sandwich beam loaded by a force 
moving with a constant velocity has been investigated. 
The classical solution for transverse displacement and 
the rotation of the cross section has a form of a sum of 
two infinite series. It has been shown that one of the 
series (the one which represents aperiodic vibrations of 
the beam) can be presented in a closed form. The 
closed solutions take different forms depending on the 
velocity v  of the moving force is smaller or bigger 
than the shear wave velocityof the beam. This follows 
from the fact that for a sandwich beam with thin sheets 
wave phenomena can occur. The shear wave of the 
beam is less than the shear wave in the core of the 
beam. The presented closed solutions have very 

important meaning in the case when we consider the 
axial forces in the sheets and shear stresses in the core 
of the beam.  
 The closed solutions improve the accuracy of the 
conventional sinus and cosines series expansion of the 
sandwich beam response by considering the aperiodic 
part as the solution not only partial of the differential 
equation but also appropriate ordinary differential 
equation. The closed solution allow to obtain the 
discontinuities in the axial and shear forces (“jump”) 
under moving force. 
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