Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56897
Title: Development of the basic capacitive accelerometers models based on the VHDL-AMS language for the circuit level of computer-aided design
Other Titles: Розроблення базових моделей ємнісних акселерометрів мовою VHDL-AMS для схемотехнічного рівня автоматизованого проектування
Authors: Теслюк, В. М.
Денисюк, П. Ю.
Теслюк, Т. В.
Teslyuk, V. M.
Denysyuk, P. Yu.
Teslyuk, T. V.
Affiliation: Національний університет “Львівська політехніка”
Lviv Polytechnic National University
Bibliographic description (Ukraine): Teslyuk V. M. Development of the basic capacitive accelerometers models based on the VHDL-AMS language for the circuit level of computer-aided design / V. M. Teslyuk, P. Yu. Denysyuk, T. V. Teslyuk // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2020. — Том 2. — № 1. — С. 15–20.
Bibliographic description (International): Teslyuk V. M. Development of the basic capacitive accelerometers models based on the VHDL-AMS language for the circuit level of computer-aided design / V. M. Teslyuk, P. Yu. Denysyuk, T. V. Teslyuk // Ukrainian Journal of Information Technology. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2020. — Vol 2. — No 1. — P. 15–20.
Is part of: Український журнал інформаційних технологій, 1 (2), 2020
Ukrainian Journal of Information Technology, 1 (2), 2020
Journal/Collection: Український журнал інформаційних технологій
Issue: 1
Volume: 2
Issue Date: 23-Sep-2020
Publisher: Видавництво Львівської політехніки
Place of the edition/event: Львів
Lviv
Keywords: VHDL-AMS
САПР
схемотехнічний рівень проектування
ємнісні акселерометри
моделювання
VHDL-AMS
CAD
circuit level
capacitive accelerometers
modelling
Number of pages: 6
Page range: 15-20
Start page: 15
End page: 20
Abstract: Розроблено базові моделі ємнісних МЕМС акселерометрів з використанням мови VHDL-AMS для схемотехнічного рівня автоматизованого проектування. Базові моделі розроблені для двох базових типів ємнісних акселерометрів: пластинчастої та гребінчастої інтегральних конструкцій. Розроблені моделі дають змогу визначати параметри вихідної напруги електричних ємнісних акселерометрів залежно від вхідних механічних та конструктивних параметрів та можуть бути використані для автоматизованого проектування МЕМС на схемотехнічному рівні. Окрім цього, наведено результати дослідження базових конструкцій пластинчастих та гребінчастих ємнісних акселерометрів. Описано розроблений метод автоматизованого проектування базових елементів МЕМС VHDL-AMS моделей для схемотехнічного рівня проектування, який ґрунтується на методі електричних аналогій та використовує системи звичайних диференціальних рівнянь і рівнянь у часткових похідних. Послідовність та кількість використаних диференціальних рівнянь визначається фізичними принципами функціонування елемента МЕМС та кількістю перетворень енергії, що дає змогу підвищити рівень автоматизації операцій синтезу порівняно з наявними методами. Синтезовано базова VHDL-AMS модель для інтегрального ємнісного акселерометра пластинчастої конструкції, яка дає змогу провести дослідження залежності вихідних параметрів від вхідних та провести аналіз налаштувань вихідних параметрів МЕМС елементів даного типу. Також побудовано базову VHDL-AMS модель для інтегрального ємнісного акселерометра гребінчастої конструкції, що дає змогу проводити дослідження в процесі автоматизованого проектування та провести аналіз його вихідних електричних параметрів від вхідних механічних.
In the article, the basic VHDL-AMS models of MEMS-based capacitive accelerometers were developed. The models were designed for two basic types of capacitive accelerometers, namely lamellar and counter-pivotal. The developed models allow us to determine the source of electrical capacitive accelerometers depending on the incoming mechanical and structural parameters and were constructed for MEMS CAD at the circuit level. The circuit level of MEMS development requires an analysis of the total integrated device electric circuits. For this purpose, all the MEMS components should be written in the specific software systems, which would be understandable for the software system. Taking into account that MEMS devices operate on different physical principles, certain difficulties may arise during the electrical analysis, that is, the work of mechanical or other devices need to be described with the help of electric parameters. In the general case, the method for building the VHDL-AMS model of the MEMS-based capacitive accelerometer is needed construction of the simplified mechanical model, and then a simplified electrical model. On the basis of the simplified models, the VHDL-AMS model of electromechanical MEMS devices has been developed. In the article, the method of automated synthesis and mathematical models using the VHDL-AMS language, which is based on the method of electrical analogies were described. They use systems of ordinary differential equations and partial differential equations to determine the relationships between input and output parameters. The sequence and quantity of used differential equations are determined by the physical principles of operation of the MEMS element and the number of energy transformations, which allows increasing the level of automation of synthesis operations compared to existing methods. The results of the basic lamellar and counter-pivotal capacitive accelerometers are also shown. This enables to conduct research and analysis of its parameters and investigate the output electric parameters dependence on the input mechanical ones.
URI: https://ena.lpnu.ua/handle/ntb/56897
Copyright owner: © Національний університет “Львівська політехніка”, 2020
URL for reference material: https://doi.org/10.1117/12.819564
https://ieeexplore.-ieee.org/document/5404039
References (Ukraine): [1] Ashenden, Peter J., & Peterson, Gregory D. (2003). The System Designer's Guide to VHDL-AMS: Analog, Mixed-signal, and Mixed-technology Modeling. Morgan Kaufmann, 880 p.
[2] Ashenden, Peter J., Peterson, Gregory D., & Teegarden, Darrell A. (2011). The System Designer's Guide to VHDLAMS: Analog, Mixed-Signal, and Mixed-Technology Modeling. Morgan Kaufmann, 880 p.
[3] Bochobza-Degani, O., Seter, D. J., Socher, E., et al. (1999). Comparative study of novel micromachined accelerometers employing MIDOS. Micro Electro Mechanical Systems: Proceedings of the 12-th Annual Intern. Conf. Orlando, Florida, USA, pp. 66–71.
[4] Holovatyy, A., & Teslyuk, V. (2015). Verilog-AMS model of mechanical component of integrated angular velocity microsensor for schematic design level. 16th International Conference on Computational Problems of Electrical Engineering, (CPEE'2015), Lviv, 2-5 Sept. 2015, pp. 43–46.
[5] Hwang, Jeongki, et al. (2017). Design and fabrication of a silicon- based MEMS acceleration switch working lower than 10 g. Journal of Micromechanics and Microengineering, 27(6), 73–79.
[6] Ivailo, M. (2016). Pandiev Behavioral modeling of CMOS digital potentiometers using VHDL-AMS. Power Electronics and Motion Control Conference, (PEMC'2016), IEEE International 25-28 Sept. 2016, 940–945.
[7] James, J. (2005). Allen Micro Electro Mechanical System Design. 1st edition: CRC Press, 496 p.
[8] Kazmierski, T. (1998). A formal description of VHDL-AMS analogue systems. Design, Automation, and Test in Europe: Proceedings of the conf., (IEEE'1998) Computer Society Washington, DC, USA, 916–920.
[9] Kruglick, J. J., Cohen, A., & Bang, C. (2006). EFAB Technology and Applications. MEMS: Design and Fabrication [Mohamed Gad – el – Hak, ed.]. Edition second (2nd). Boca Raton: CRC Press, 664 p.
[10] Li, Muhua, et al. (2017). Design and fabrication of a low insertion loss capacitive RF MEMS switch with novel microstructures for actuation. Solid-State Electronics, 127, 32–37.
[11] Marc, J. (2002). Madou Fundamentals of Microfabrication: The Science of Miniaturization. Edition second (2nd). CRC Press, 752 p.
[12] Papanuskas, J. (1997). IEEE VHDL 1076.1: mixed-signal behavioral modeling and verificationin view of automotive applications. VHDL International Usersapos: Proc. Forum, 252–257.
[13] Partridge, A., Reynolds, J. K., & Chui, B. W., et al. (2000). A High – performance planar piezoresistive accelerometer. Journal of microelectromechanical systems, 9(1), 58–66.
[14] Patent 88405 Ukraina, MPK (2009) G01P 15/125. Prystrii dlia vymiriuvannia pryskorennia. Zahariuka R.V., Ivantsiva R.-A. D., Lobura M.V., ziavnyk i vlasnyk Lьvivsьkyi naukovo- doslidnyi radiotekhnichnyi instytut, Natsionalьnyi Universytet "Lьvivsьka politekhnika". № a 2008 03858; zaiavka 27.03.08; opubl. 12.10.09, Biul. № 19. [In Ukrainian].
[15] Pêcheux, F., Lallement, C., & Vachoux, A. (2005). VHDLAMS and Verilog-AMS as alternative hardware description languages for efficient modeling of multidiscipline systems. In: IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 24(2), 204-225.
[16] Saha, I., Islam, R., & Kanakaraju, K., et al. (1999). Silicon micromachined accelerometers for space inertial systems. SPIE: Proceedings of the Intern. Conf. Bellingham, 3903, 162–170.
[17] Teslyuk, V., Pereyma, M., Denysyuk, P., & Chimich, I. (2006). Computer-aided system for MEMS design "ProMIP". In: International Conf. Perspective Technologies and Methods in MEMS Design, Lviv-Polyana, Ukraine, pp. 49–52.
[18] Teslyuk, V., Tariq (Moh'o Taisir) Ali AlOmari, Denysyuk, P., & Kernytskyy, A. (2008). The Method For Automated Design Of Vhdl-Ams Models Of Mems Elements On Circuit Level. Young Scientists (MEMSTECH'2008): Proceedings of the IV-th Intern. Conf., Lviv-Polyana, pp. 141–142.
[19] Wang Xiaoyu, Yu Linghui, Xie Song. (2011). Research on micro-electro-mechanical system computer aided design. Electronic and Mechanical Engineering and Information Technology (EMEIT'2011). International Conference on 12-14 Aug. 2011, pp. 31–37.
[20] Xiaochuan Tang, Yufeng Zhang, Weiping Chen, Xiaowei Liu. (2008). A system-level simulation of force-balance MEMS accelerometers by VHDL_AMS. Proceedings SPIE 7130, Fourth International Symposium on Precision Mechanical Measurements, 71300R, December 31, 2008. https://doi.org/10.1117/12.819564
[21] Zhao, C., & Kazmierski, T. (2007). An efficient and accurate MEMS Accelerometer Model with sense finger dynamics for mixed-texnology control loops. In: IEEE Behavioral Modeling and Simulation Conference (BMAS 2007), Sep. 2007, San Jose, California, USA, pp. 143–147.
[22] Zhao, C., & Kazmierski, T. (2009). Analysis of Sense Finger Dynamics for Accurate Sigma-Delta MEMS Accelerometer Modelling in VHDL-AMS. In: 2009 Forum on Specification & Design Languages Conference (FDL 2009), Sep. 2009, Sophia Antipolis, France. Retrieved from: https://ieeexplore.-ieee.org/document/5404039
References (International): [1] Ashenden, Peter J., & Peterson, Gregory D. (2003). The System Designer's Guide to VHDL-AMS: Analog, Mixed-signal, and Mixed-technology Modeling. Morgan Kaufmann, 880 p.
[2] Ashenden, Peter J., Peterson, Gregory D., & Teegarden, Darrell A. (2011). The System Designer's Guide to VHDLAMS: Analog, Mixed-Signal, and Mixed-Technology Modeling. Morgan Kaufmann, 880 p.
[3] Bochobza-Degani, O., Seter, D. J., Socher, E., et al. (1999). Comparative study of novel micromachined accelerometers employing MIDOS. Micro Electro Mechanical Systems: Proceedings of the 12-th Annual Intern. Conf. Orlando, Florida, USA, pp. 66–71.
[4] Holovatyy, A., & Teslyuk, V. (2015). Verilog-AMS model of mechanical component of integrated angular velocity microsensor for schematic design level. 16th International Conference on Computational Problems of Electrical Engineering, (CPEE'2015), Lviv, 2-5 Sept. 2015, pp. 43–46.
[5] Hwang, Jeongki, et al. (2017). Design and fabrication of a silicon- based MEMS acceleration switch working lower than 10 g. Journal of Micromechanics and Microengineering, 27(6), 73–79.
[6] Ivailo, M. (2016). Pandiev Behavioral modeling of CMOS digital potentiometers using VHDL-AMS. Power Electronics and Motion Control Conference, (PEMC'2016), IEEE International 25-28 Sept. 2016, 940–945.
[7] James, J. (2005). Allen Micro Electro Mechanical System Design. 1st edition: CRC Press, 496 p.
[8] Kazmierski, T. (1998). A formal description of VHDL-AMS analogue systems. Design, Automation, and Test in Europe: Proceedings of the conf., (IEEE'1998) Computer Society Washington, DC, USA, 916–920.
[9] Kruglick, J. J., Cohen, A., & Bang, C. (2006). EFAB Technology and Applications. MEMS: Design and Fabrication [Mohamed Gad – el – Hak, ed.]. Edition second (2nd). Boca Raton: CRC Press, 664 p.
[10] Li, Muhua, et al. (2017). Design and fabrication of a low insertion loss capacitive RF MEMS switch with novel microstructures for actuation. Solid-State Electronics, 127, 32–37.
[11] Marc, J. (2002). Madou Fundamentals of Microfabrication: The Science of Miniaturization. Edition second (2nd). CRC Press, 752 p.
[12] Papanuskas, J. (1997). IEEE VHDL 1076.1: mixed-signal behavioral modeling and verificationin view of automotive applications. VHDL International Usersapos: Proc. Forum, 252–257.
[13] Partridge, A., Reynolds, J. K., & Chui, B. W., et al. (2000). A High – performance planar piezoresistive accelerometer. Journal of microelectromechanical systems, 9(1), 58–66.
[14] Patent 88405 Ukraina, MPK (2009) G01P 15/125. Prystrii dlia vymiriuvannia pryskorennia. Zahariuka R.V., Ivantsiva R.-A. D., Lobura M.V., ziavnyk i vlasnyk Lvivskyi naukovo- doslidnyi radiotekhnichnyi instytut, Natsionalnyi Universytet "Lvivska politekhnika". № a 2008 03858; zaiavka 27.03.08; opubl. 12.10.09, Biul. No 19. [In Ukrainian].
[15] Pêcheux, F., Lallement, C., & Vachoux, A. (2005). VHDLAMS and Verilog-AMS as alternative hardware description languages for efficient modeling of multidiscipline systems. In: IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 24(2), 204-225.
[16] Saha, I., Islam, R., & Kanakaraju, K., et al. (1999). Silicon micromachined accelerometers for space inertial systems. SPIE: Proceedings of the Intern. Conf. Bellingham, 3903, 162–170.
[17] Teslyuk, V., Pereyma, M., Denysyuk, P., & Chimich, I. (2006). Computer-aided system for MEMS design "ProMIP". In: International Conf. Perspective Technologies and Methods in MEMS Design, Lviv-Polyana, Ukraine, pp. 49–52.
[18] Teslyuk, V., Tariq (Moh'o Taisir) Ali AlOmari, Denysyuk, P., & Kernytskyy, A. (2008). The Method For Automated Design Of Vhdl-Ams Models Of Mems Elements On Circuit Level. Young Scientists (MEMSTECH'2008): Proceedings of the IV-th Intern. Conf., Lviv-Polyana, pp. 141–142.
[19] Wang Xiaoyu, Yu Linghui, Xie Song. (2011). Research on micro-electro-mechanical system computer aided design. Electronic and Mechanical Engineering and Information Technology (EMEIT'2011). International Conference on 12-14 Aug. 2011, pp. 31–37.
[20] Xiaochuan Tang, Yufeng Zhang, Weiping Chen, Xiaowei Liu. (2008). A system-level simulation of force-balance MEMS accelerometers by VHDL_AMS. Proceedings SPIE 7130, Fourth International Symposium on Precision Mechanical Measurements, 71300R, December 31, 2008. https://doi.org/10.1117/12.819564
[21] Zhao, C., & Kazmierski, T. (2007). An efficient and accurate MEMS Accelerometer Model with sense finger dynamics for mixed-texnology control loops. In: IEEE Behavioral Modeling and Simulation Conference (BMAS 2007), Sep. 2007, San Jose, California, USA, pp. 143–147.
[22] Zhao, C., & Kazmierski, T. (2009). Analysis of Sense Finger Dynamics for Accurate Sigma-Delta MEMS Accelerometer Modelling in VHDL-AMS. In: 2009 Forum on Specification & Design Languages Conference (FDL 2009), Sep. 2009, Sophia Antipolis, France. Retrieved from: https://ieeexplore.-ieee.org/document/5404039
Content type: Article
Appears in Collections:Ukrainian Journal of Information Technology. – 2020. – Vol. 2, No. 1

Files in This Item:
File Description SizeFormat 
2020v2n1_Teslyuk_V_M-Development_of_the_basic_15-20.pdf2.45 MBAdobe PDFView/Open
2020v2n1_Teslyuk_V_M-Development_of_the_basic_15-20__COVER.png1.95 MBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.