https://oldena.lpnu.ua/handle/ntb/56876
Title: | Експрес-аналіз даних зондування становленням електромагнітного поля, отриманих на дамбі хвостосховища у Стебнику |
Other Titles: | Express analysis of transient electromagnetic data acquired on the waste reservoir dam in Stebnyk |
Authors: | Ладанівський, Б. Т. Савків, Л. Г. Сапужак, О. Я. Романюк, О. І. Підвірний, О. І. Коляденко, В. В. Сироєжко, О. В. Дещиця, С. А. Ladanivskyy, B. T. Savkiv, L. H. Sapuzhak, O. Ya. Romanyuk, O. I. Pidvirny, O. I. Kolyadenko, V. V. Syroezhko, O. V. Deshchytsya, S. A. |
Affiliation: | Національний університет “Львівська політехніка” Карпатське відділення Інституту геофізики ім. С. І. Субботіна Національної академії наук України Lviv Polytechnic National University Carpathian Branch of S. I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine |
Bibliographic description (Ukraine): | Експрес-аналіз даних зондування становленням електромагнітного поля, отриманих на дамбі хвостосховища у Стебнику / Б. Т. Ладанівський, Л. Г. Савків, О. Я. Сапужак, О. І. Романюк, О. І. Підвірний, В. В. Коляденко, О. В. Сироєжко, С. А. Дещиця // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2019. — Том 1. — № 1. — С. 67–71. |
Bibliographic description (International): | Express analysis of transient electromagnetic data acquired on the waste reservoir dam in Stebnyk / B. T. Ladanivskyy, L. H. Savkiv, O. Ya. Sapuzhak, O. I. Romanyuk, O. I. Pidvirny, V. V. Kolyadenko, O. V. Syroezhko, S. A. Deshchytsya // Ukrainian Journal of Information Technology. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2019. — Vol 1. — No 1. — P. 67–71. |
Is part of: | Український журнал інформаційних технологій, 1 (1), 2019 Ukrainian Journal of Information Technology, 1 (1), 2019 |
Journal/Collection: | Український журнал інформаційних технологій |
Issue: | 1 |
Volume: | 1 |
Issue Date: | 26-Sep-2019 |
Publisher: | Видавництво Львівської політехніки |
Place of the edition/event: | Львів Lviv |
Keywords: | польові вимірювання експериментальні дані кубічний сплайн електропровідність геоелектричний розріз in field measurements experimental data cubic spline electrical conductivity geoelectrical cross-section |
Number of pages: | 5 |
Page range: | 67-71 |
Start page: | 67 |
End page: | 71 |
Abstract: | Електромагнітні (ЕМ) методи геофізики дають змогу відобразити розподіл електропровідності підповерхневого
середовища шляхом аналізу даних, отриманих на поверхні Землі. Метод зондування становленням поля у ближній зоні
(ЗСБ) є ЕМ методом геофізики з керованим джерелом, який дає змогу вивчати розподіл електропровідності
підповерхневих шарів землі, аналізуючи нестаціонарний перехідний процес загасання ЕМ поля у провідному середовищі після
його збудження ступінчастим струмом, що описується функцією Хевісайда. Викладено математичні та алгоритмічні
засоби для експрес-аналізу експериментальних даних зондування становленням електромагнітного (EM) поля у ближній
зоні (ЗСБ), практичне застосування яких під час польових досліджень іноді має важливе значення, оскільки дає змогу
приймати оперативні рішення щодо оптимізації виконання експериментальних польових робіт та швидко оцінювати
стан досліджуваного об'єкта. Запропонований алгоритм експрес-аналізу розроблено на підставі трансформації
експериментальної кривої методу ЗСБ, відомої ще як S-інверсія, котра водночас базується на апроксимації провідного
півпростору тонкою плівкою, що занурюється у півпростір з плином перехідного процесу в ЕМ полі. Для зменшення впливу
завад на дані вимірів в алгоритмі проведено апроксимацію експериментальної кривої зондування, що розроблена з
врахуванням таких речей: розв'язків рівнянь поширення ЕМ поля у провідному середовищі; функції кубічного сплайну;
елементів математичного аналізу неперервних функцій. За даними профільних спостережень з використанням розроблених
засобів експрес-аналізу було отримано одновимірні моделі питомого електричного опору та на їхній основі побудовано
псевдодвовимірну модель геоелектричного розрізу дамби хвостосховища, що розташована поблизу Стебника. Аналіз
отриманих моделей дав змогу виявити дві ділянки, де бажано провести додаткові дослідження для уточнення геологічної
ситуації. Звичайно, алгоритми інверсії експериментальних даних як з математичного, так і з погляду реалізації
алгоритму, є набагато складнішими. Проте якщо реалізувати швидкий і ефективний алгоритм одновимірної інверсії даних ЗСБ,
замість зазначеної вище трансформації, то можна буде значно підвищити достовірність результату. Electromagnetic (EM) methods of geophysics allow to image the subsurface conductivity distribution by analyzing data measured on the Earth surface. The transient electromagnetic (TEM) sounding method is a time-domain controlled source one which utilize a non-stationary transient process of the EM field decaying in the conductive medium due to the step current excitation which is described by the Heaviside function. The mathematical and algorithmic tools for express analysis of such experimental data acquired for the TEM method are presented in this article, the practical application of which is sometimes important for experimental in field measurements, since it allows as to make immediate decisions on optimization of experimental field work as well as to qualitatively estimate the state of the object under study. The proposed express analysis algorithm is developed on the basis of a widely used transformation of the experimental TEM curve, also known as the S-inversion, which in turn is based on the approximation of a conductive half-space by a thin sheet which is immersing into a non-conductive half-space with the decaying of transient process in the EM field. To reduce the influence of noise into the measured data, we carrying out the approximation of the experimental sounding curves accounting several aspects: the solutions of equations which describe the penetration of EM field into a conducting medium; the function of the cubic spline; and elements of mathematical analysis of continuous functions. According to profile measurements, one dimensional models of resistivity distribution were obtained using the created express analysis tools and a pseudo two dimensional model of the geoelectric cross-section of the waste reservoir dam which is next to the Stebnyk town was constructed on their basis. The analysis of the obtained models allowed us to detect two areas where it is desirable to carry out additional studies to clarify the geological situation. Of course, algorithms for inversion of experimental data, both as from a mathematical point of view as well as from the point of view of algorithm implementation, are much more complicated. However, if one implements a fast and efficient one-dimensional inversion algorithm for the TEM data instead of the transformation mentioned above, it will be possible to significantly improve the reliability of the result. |
URI: | https://ena.lpnu.ua/handle/ntb/56876 |
Copyright owner: | © Національний університет “Львівська політехніка”, 2019 |
URL for reference material: | https://doi.org/10.1190/GEO2012-0072.1 https://doi.org/10.1190/GEO2014-0333.1 https://doi.org/10.15421/40270433 https://doi.org/10.15421/40280631 https://doi.org/10.15421/40280832 https://doi.org/10.15421/40280727 https://doi.org/10.4401/ag-7551 https://doi.org/10.1007/s00024-018-1835-8 https://doi.org/10.1016/j.jappgeo.2011.10.007 |
References (Ukraine): | [1] Ge, J., Everett, M. E., & Weiss, C. J. (2012). Fractional diffusion analysis of the electromagnetic field in fractured media. Part I: 2D approach, Geophysics, 77, WB213–WB218, https://doi.org/10.1190/GEO2012-0072.1. [2] Ge, J., Everett, M. E., & Weiss, C. J. (2015). Fractional diffusion analysis of the electromagnetic field in fractured media. Part 2: 3D approach, Geophysics, 80, E175–E185, https://doi.org/10.1190/GEO2014-0333.1. [3] Grytsiuk, Yu. I., & Leshkevych, I. F. (2017). The Problems of Definition and Analysis of Software Requirements. Scientific Bulletin of UNFU, 27(4), 148–158. https://doi.org/10.15421/40270433. [4] Hrytsiuk, Yu. I., & Andrushchakevych, O. T. (2018). Means for determining software quality by metric analysis methods. Scientific Bulletin of UNFU, 28(6), 159–171. https://doi.org/10.15421/40280631. [5] Hrytsiuk, Yu. I., & Nemova, E. A. (2018). Management Features Process of Developing Software Requirements. Scientific Bulletin of UNFU, 28(8), 161–169. https://doi.org/10.15421/40280832. [6] Hrytsiuk, Yu. I., & Nemova, E. A. (2018). Peculiarities of Formulation of Requirements to the Software. Scientific Bulletin of UNFU, 28(7), 135–148. https://doi.org/10.15421/40280727. [7] Kamenetsky, F. M., Stettler, E. H., & Trigubovich, G. M. (2010). Transient Geo-Electromagnetiсs. Munich, Ludwig- Maximilian University, Vela Verlag, 304 p. [8] McNeill, J. D. (1980). Applications of trancient electromagnetic techniques. Geonics Ltd., Ontario, technical note TN 7, 17 p. [9] Meju, M. A. (1995). Simple effective resistivity-depth transformations for infield or real-time data processing. Computer & Geosciences, 21, 985–992. [10] Meju, M. A. (1998). A simple method of transient electromagnetic data Analysis. Geophysics, 63, 405–410. [11] Sidorov, V. A. (1985). Pulse inductive electromagnetic prospecting. Moscow: Nedra, 192 p. [In Russian]. [12] Vallianatos, F. (2017). Transient Electromagnetic Method in the Keritis basin (Crete, Greece): Evidence of hierarchy in a complex geological structure in view of Tsallis distribution. Annals of Geophysics, 60, GM675, https://doi.org/10.4401/ag-7551. [13] Vallianatos, F., Kouli, M., & Kalisperi, D. (2018). Evidence of Hierarchy in the Complex Fractured System of Geropotamos (Crete, Greece), as Extracted from Transient Electromagnetic Responses. Pure and Applied Geophysics, 175,2895–2904, https://doi.org/10.1007/s00024-018-1835-8. [14] Xue, G.-Q., Bai, C.-Y., Yan, S., Greenhalgh, S., Li, M.-F., & Zhou, N.-N. (2012). Deep sounding TEM investigation method based on a modified fixed central-loop system. Journal of Applied Geophysics, 76, 23–32, https://doi.org/10.1016/j.jappgeo.2011.10.007. [15] Zhdanov, M. S. (1986). Electromagnetic prospecting. Moscow: Nedra, 316 pp. [In Russian]. |
References (International): | [1] Ge, J., Everett, M. E., & Weiss, C. J. (2012). Fractional diffusion analysis of the electromagnetic field in fractured media. Part I: 2D approach, Geophysics, 77, WB213–WB218, https://doi.org/10.1190/GEO2012-0072.1. [2] Ge, J., Everett, M. E., & Weiss, C. J. (2015). Fractional diffusion analysis of the electromagnetic field in fractured media. Part 2: 3D approach, Geophysics, 80, E175–E185, https://doi.org/10.1190/GEO2014-0333.1. [3] Grytsiuk, Yu. I., & Leshkevych, I. F. (2017). The Problems of Definition and Analysis of Software Requirements. Scientific Bulletin of UNFU, 27(4), 148–158. https://doi.org/10.15421/40270433. [4] Hrytsiuk, Yu. I., & Andrushchakevych, O. T. (2018). Means for determining software quality by metric analysis methods. Scientific Bulletin of UNFU, 28(6), 159–171. https://doi.org/10.15421/40280631. [5] Hrytsiuk, Yu. I., & Nemova, E. A. (2018). Management Features Process of Developing Software Requirements. Scientific Bulletin of UNFU, 28(8), 161–169. https://doi.org/10.15421/40280832. [6] Hrytsiuk, Yu. I., & Nemova, E. A. (2018). Peculiarities of Formulation of Requirements to the Software. Scientific Bulletin of UNFU, 28(7), 135–148. https://doi.org/10.15421/40280727. [7] Kamenetsky, F. M., Stettler, E. H., & Trigubovich, G. M. (2010). Transient Geo-Electromagnetiss. Munich, Ludwig- Maximilian University, Vela Verlag, 304 p. [8] McNeill, J. D. (1980). Applications of trancient electromagnetic techniques. Geonics Ltd., Ontario, technical note TN 7, 17 p. [9] Meju, M. A. (1995). Simple effective resistivity-depth transformations for infield or real-time data processing. Computer & Geosciences, 21, 985–992. [10] Meju, M. A. (1998). A simple method of transient electromagnetic data Analysis. Geophysics, 63, 405–410. [11] Sidorov, V. A. (1985). Pulse inductive electromagnetic prospecting. Moscow: Nedra, 192 p. [In Russian]. [12] Vallianatos, F. (2017). Transient Electromagnetic Method in the Keritis basin (Crete, Greece): Evidence of hierarchy in a complex geological structure in view of Tsallis distribution. Annals of Geophysics, 60, GM675, https://doi.org/10.4401/ag-7551. [13] Vallianatos, F., Kouli, M., & Kalisperi, D. (2018). Evidence of Hierarchy in the Complex Fractured System of Geropotamos (Crete, Greece), as Extracted from Transient Electromagnetic Responses. Pure and Applied Geophysics, 175,2895–2904, https://doi.org/10.1007/s00024-018-1835-8. [14] Xue, G.-Q., Bai, C.-Y., Yan, S., Greenhalgh, S., Li, M.-F., & Zhou, N.-N. (2012). Deep sounding TEM investigation method based on a modified fixed central-loop system. Journal of Applied Geophysics, 76, 23–32, https://doi.org/10.1016/j.jappgeo.2011.10.007. [15] Zhdanov, M. S. (1986). Electromagnetic prospecting. Moscow: Nedra, 316 pp. [In Russian]. |
Content type: | Article |
Appears in Collections: | Ukrainian Journal of Information Technology. – 2019. – Vol. 1, No. 1 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v1n1_Ladanivskyy_B_T-Express_analysis_of_67-71.pdf | 507.49 kB | Adobe PDF | View/Open | |
2019v1n1_Ladanivskyy_B_T-Express_analysis_of_67-71__COVER.png | 1.93 MB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.