Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56831
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMykyichuk, Mykola
dc.contributor.authorRudyk, Yuriy
dc.date.accessioned2022-05-23T11:23:55Z-
dc.date.available2022-05-23T11:23:55Z-
dc.date.created2021-02-23
dc.date.issued2021-02-23
dc.identifier.citationMykyichuk M. Material testing and results estimation by safety indexes / Mykola Mykyichuk, Yuriy Rudyk // Measuring equipment and metrology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 82. — No 2. — P. 38–45.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56831-
dc.description.abstractIn the article, both the test method features and the test results of research of thermal behavior of steel fragment were analyzed. Two types of test conditions for steel construction material were considered. The definition and main features of measurement techniques were presented. Fire retardant material test results for steel plates with hydrogen combustion shown the limit of fire resistance of the tested samples is more than 30 min. The main advantages and disadvantages of the test were determined. The positive and negative aspects of this approach were analyzed. These techniques' effective thermal condition is in an environment of uncertainty and has no limited resources was established. Concepts and principles for establishing validity, and frameworks and methods for validating test methods and their results are important elements of safety systems. The article considers the safety of the technical component of a complex organizational and technical system with the study of the functional relationship between the safety elements parameters: temperature, time, fire retardant – by hydrogen participation.
dc.format.extent38-45
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 2 (82), 2021
dc.relation.ispartofMeasuring equipment and metrology, 2 (82), 2021
dc.relation.urihttp://elektront.ru/investigation-of-the-causes-of-accidents/accidents-faults-ofturbogenerators/15-causes-consequences-of-accidents-andfailures-of-turbine-generators.html
dc.subjectValidation
dc.subjectHydrogen fire temperature
dc.subjectMeasurement method
dc.subjectQuality control
dc.subjectMetrological support
dc.titleMaterial testing and results estimation by safety indexes
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv State University of Life Safety
dc.format.pages8
dc.identifier.citationenMykyichuk M. Material testing and results estimation by safety indexes / Mykola Mykyichuk, Yuriy Rudyk // Measuring equipment and metrology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 82. — No 2. — P. 38–45.
dc.identifier.doihttps://doi.org/10.23939/istcmtm2021.02.038
dc.relation.references[1] Ritsu Dobashi, “Fire and explosion disasters occurred due to the Great East Japan Earthquake (March 11, 2011)”, Journal of Loss Prevention in the Process Industries, Vol. 31, p. 121–126, 2014.
dc.relation.references[2] Investigation of the causes of accidents/ malfunctions of turbogenerators, 2011. [Online]. Available: http://elektront.ru/investigation-of-the-causes-of-accidents/accidents-faults-ofturbogenerators/15-causes-consequences-of-accidents-andfailures-of-turbine-generators.html
dc.relation.references[3] P. Stoliarchuk, Y. Rudyk, “Fire hazard assessment of electrical installations contact connections transient resistance increase” Bulletin of the National University “Lviv Polytechnic”. no. 665 Automation, measurement and control, p. 101–107, 2010.
dc.relation.references[4] A. Subota, “Fire resistance of bearing steel constructions of machine halls of nuclear power plants under conditions of emergency combustion of hydrogen: dis. candidate techn. sciences: 21.06.02. Lviv: LDUBZhD, 168 p. 2014.
dc.relation.references[5] R. A. Leishear, “The Autoignition of Nuclear Reactor Power Plant Explosions.” ASME. ASME J of Nuclear Rad Sci. January 2020; 6(1): 014001.
dc.relation.references[6] R. A. Leishear, “Nuclear Power Plant Fires and Explosions: Part I – Plant Designs and Hydrogen Ignition.” Proceedings of the ASME 2017 Pressure Vessels and Piping Conference. Vol. 4: Fluid-Structure Interaction. Waikoloa, Hawaii, USA, 2017.
dc.relation.references[7] Vinny Gupta, Juan P. Hidalgo, Adam Cowlard, Cecilia Abecassis-Empis, Agustin H. Majdalani, Cristian Maluk, José L. Torero, “Ventilation effects on the thermal characteristics of fire spread modes in open-plan compartment fires”, Fire Safety Journal, Vol. 120, 2021, 103072.
dc.relation.references[8] A. H. Arastu, E. Tom, “Transient Analysis of Fire Protection System at a Nuclear Power Plant Using Computer Code USLAM.” Proceedings of the 2018 26th International Conference on Nuclear Engineering. Vol. 2: Plant Systems, Structures, Components, and Materials; Risk Assessments and Management. London, England, 2018.
dc.relation.references[9] Y. Rudyk, V. Shunkin, “Determination of the quantity of combustible material in cable products in the process of fire safety testing”. Fire Safety, (34), p. 78–83. 2019.
dc.relation.references[10] Fire Hazard Comparison of Fire-Retarded and Non-Fire-Retarded Products, NBS Special Publication 749, U.S. Commerce Dept. National Bureau of Standards (NBS), retrieved 30 May 2014.
dc.relation.references[11] V. Babrauskas, S. J. Grayson, eds., Heat Release in Fires, Interscience Communications Ltd, London (1992; reprinted 2009). xii, 623 p.
dc.relation.references[12] V. Babrauskas, Fire Science Applications to Fire Investigations, Interscience Communications Ltd, London, 2014.
dc.relation.references[13] L. A. Hollingbery, T. R. Hull “The Fire Retardant Effects of Huntite in Natural Mixtures with Hydromagnesite”. Polymer Degradation and Stability. 97 (4): 504–512, 2012.
dc.relation.references[14] L. A. Hollingbery, T. R. Hull, “The Thermal Decomposition of Natural Mixtures of Huntite and Hydromagnesite”. Thermochimica Acta. 2012 528: 45–52.
dc.relation.references[15] T. R. Hull, A. Witkowski, L. A. Hollingbery, “Fire Retardant Action of Mineral Fillers”. Polymer Degradation and Stability. 96 (8): 1462–1469, 2011.
dc.relation.references[16] I. van der Veen, J. de Boer, “Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis”. Chemosphere. 88 (10): 1119–1153, 2012.
dc.relation.references[17] E. D. Weil, S. V. Levchik, “Flame Retardants for Plastics and Textiles: Practical Applications”. Munich: Carl Hanser Verlag. p. 97, 2015.
dc.relation.references[18] Yu.A. Koshmarov, S.V. Puzach, “Calculation of heat and mass transfer during depressurization of a hydride hydrogen accumulator in a room during a fire” Organizational and scientific and technical support of the state fire service, Research Institute of the Ministry of Internal Affairs of the Russian Federation, p. 44–56, 1998.
dc.relation.references[19] R. M. Tatsii, O. Y. Pazen, S. Y. Vovk, “Modeling of the heat transfer process taking into account bursting expansion of fire-retardant coating”. Scientific Bulletin of the National Mining University, no. 1: 36-40, 2020.
dc.relation.references[20] O. Menshykova, T. Rak, Y. Rudyk, “Expanding of compliance assessment for preventive measures of fire safety as a local facilities with high risk level in Ukraine”, Przedsiębiorczość I Zarządzanie T. XIX-1-3, pp. 181–194, 2018.
dc.relation.references[21] A. Rae, R. Alexander, J. McDermid, “Fixing the cracks in the crystal ball: a maturity model for quantitative risk assessment”. Reliab. Eng. Syst. Saf. 125, pp. 67–81, 2014.
dc.relation.references[22] M. M.Semerak, R. M. Tatsij, O. Y. Pazen. “Thermal insulating ability of multi-layer building structures taking into account the destruction of an arbitrary layer” The Bulletin of the Kokshetau Technical Institute of the Ministry of Emergency Situations of the Republic of Kazakhstan 4m 2015.
dc.relation.references[23] M. Kloos, J. Peschke, “Improved modeling and assessment of the performance of firefighting means in the frame of a fire PSA”. Science and Technology of Nuclear Installations, 2015.
dc.relation.references[24] R. M. Tatsii, O. Y. Pazen, “General Boundary- Value Problems for the Heat Conduction Equation with Piecewise- Continuous Coefficients”. J Eng Phys Thermophy 89, 357–368, 2016.
dc.relation.references[25] Y. Rudyk, T. Yuzkiv, Y. Yuzkiv, “Determining fire resistance limit of electric networks”. Fire Safety, 21, p. 148–153, 2012.
dc.relation.references[26] M. Mykyychuk, Yu. Yatsuk, O. Ivakhiv, R. Matviiv, “Voltage and Resistance Calibrators for Verification of Industrial Instrument Applications”, in Proc. Metrol. Com. of Katowice branch of Pol. Acad. Sciences. Series: Conf. no. 21, 12th Conference “Problems and Progress in Metrology”, Szczyrk, Poland, pp. 114–117, 2016.
dc.relation.references[27] F. Goerlandt, N. Khakzad, G. Reniers, “Validity and validation of safety-related quantitative risk analysis: A review”, Safety Science, Vol. 99, Part B, p. 127–139, 2017.
dc.relation.references[28] ISO/IEC Guide 98-6:2021 Uncertainty of measurement — Part 6: Developing and using measurement models.
dc.relation.referencesen[1] Ritsu Dobashi, "Fire and explosion disasters occurred due to the Great East Japan Earthquake (March 11, 2011)", Journal of Loss Prevention in the Process Industries, Vol. 31, p. 121–126, 2014.
dc.relation.referencesen[2] Investigation of the causes of accidents/ malfunctions of turbogenerators, 2011. [Online]. Available: http://elektront.ru/investigation-of-the-causes-of-accidents/accidents-faults-ofturbogenerators/15-causes-consequences-of-accidents-andfailures-of-turbine-generators.html
dc.relation.referencesen[3] P. Stoliarchuk, Y. Rudyk, "Fire hazard assessment of electrical installations contact connections transient resistance increase" Bulletin of the National University "Lviv Polytechnic". no. 665 Automation, measurement and control, p. 101–107, 2010.
dc.relation.referencesen[4] A. Subota, "Fire resistance of bearing steel constructions of machine halls of nuclear power plants under conditions of emergency combustion of hydrogen: dis. candidate techn. sciences: 21.06.02. Lviv: LDUBZhD, 168 p. 2014.
dc.relation.referencesen[5] R. A. Leishear, "The Autoignition of Nuclear Reactor Power Plant Explosions." ASME. ASME J of Nuclear Rad Sci. January 2020; 6(1): 014001.
dc.relation.referencesen[6] R. A. Leishear, "Nuclear Power Plant Fires and Explosions: Part I – Plant Designs and Hydrogen Ignition." Proceedings of the ASME 2017 Pressure Vessels and Piping Conference. Vol. 4: Fluid-Structure Interaction. Waikoloa, Hawaii, USA, 2017.
dc.relation.referencesen[7] Vinny Gupta, Juan P. Hidalgo, Adam Cowlard, Cecilia Abecassis-Empis, Agustin H. Majdalani, Cristian Maluk, José L. Torero, "Ventilation effects on the thermal characteristics of fire spread modes in open-plan compartment fires", Fire Safety Journal, Vol. 120, 2021, 103072.
dc.relation.referencesen[8] A. H. Arastu, E. Tom, "Transient Analysis of Fire Protection System at a Nuclear Power Plant Using Computer Code USLAM." Proceedings of the 2018 26th International Conference on Nuclear Engineering. Vol. 2: Plant Systems, Structures, Components, and Materials; Risk Assessments and Management. London, England, 2018.
dc.relation.referencesen[9] Y. Rudyk, V. Shunkin, "Determination of the quantity of combustible material in cable products in the process of fire safety testing". Fire Safety, (34), p. 78–83. 2019.
dc.relation.referencesen[10] Fire Hazard Comparison of Fire-Retarded and Non-Fire-Retarded Products, NBS Special Publication 749, U.S. Commerce Dept. National Bureau of Standards (NBS), retrieved 30 May 2014.
dc.relation.referencesen[11] V. Babrauskas, S. J. Grayson, eds., Heat Release in Fires, Interscience Communications Ltd, London (1992; reprinted 2009). xii, 623 p.
dc.relation.referencesen[12] V. Babrauskas, Fire Science Applications to Fire Investigations, Interscience Communications Ltd, London, 2014.
dc.relation.referencesen[13] L. A. Hollingbery, T. R. Hull "The Fire Retardant Effects of Huntite in Natural Mixtures with Hydromagnesite". Polymer Degradation and Stability. 97 (4): 504–512, 2012.
dc.relation.referencesen[14] L. A. Hollingbery, T. R. Hull, "The Thermal Decomposition of Natural Mixtures of Huntite and Hydromagnesite". Thermochimica Acta. 2012 528: 45–52.
dc.relation.referencesen[15] T. R. Hull, A. Witkowski, L. A. Hollingbery, "Fire Retardant Action of Mineral Fillers". Polymer Degradation and Stability. 96 (8): 1462–1469, 2011.
dc.relation.referencesen[16] I. van der Veen, J. de Boer, "Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis". Chemosphere. 88 (10): 1119–1153, 2012.
dc.relation.referencesen[17] E. D. Weil, S. V. Levchik, "Flame Retardants for Plastics and Textiles: Practical Applications". Munich: Carl Hanser Verlag. p. 97, 2015.
dc.relation.referencesen[18] Yu.A. Koshmarov, S.V. Puzach, "Calculation of heat and mass transfer during depressurization of a hydride hydrogen accumulator in a room during a fire" Organizational and scientific and technical support of the state fire service, Research Institute of the Ministry of Internal Affairs of the Russian Federation, p. 44–56, 1998.
dc.relation.referencesen[19] R. M. Tatsii, O. Y. Pazen, S. Y. Vovk, "Modeling of the heat transfer process taking into account bursting expansion of fire-retardant coating". Scientific Bulletin of the National Mining University, no. 1: 36-40, 2020.
dc.relation.referencesen[20] O. Menshykova, T. Rak, Y. Rudyk, "Expanding of compliance assessment for preventive measures of fire safety as a local facilities with high risk level in Ukraine", Przedsiębiorczość I Zarządzanie T. XIX-1-3, pp. 181–194, 2018.
dc.relation.referencesen[21] A. Rae, R. Alexander, J. McDermid, "Fixing the cracks in the crystal ball: a maturity model for quantitative risk assessment". Reliab. Eng. Syst. Saf. 125, pp. 67–81, 2014.
dc.relation.referencesen[22] M. M.Semerak, R. M. Tatsij, O. Y. Pazen. "Thermal insulating ability of multi-layer building structures taking into account the destruction of an arbitrary layer" The Bulletin of the Kokshetau Technical Institute of the Ministry of Emergency Situations of the Republic of Kazakhstan 4m 2015.
dc.relation.referencesen[23] M. Kloos, J. Peschke, "Improved modeling and assessment of the performance of firefighting means in the frame of a fire PSA". Science and Technology of Nuclear Installations, 2015.
dc.relation.referencesen[24] R. M. Tatsii, O. Y. Pazen, "General Boundary- Value Problems for the Heat Conduction Equation with Piecewise- Continuous Coefficients". J Eng Phys Thermophy 89, 357–368, 2016.
dc.relation.referencesen[25] Y. Rudyk, T. Yuzkiv, Y. Yuzkiv, "Determining fire resistance limit of electric networks". Fire Safety, 21, p. 148–153, 2012.
dc.relation.referencesen[26] M. Mykyychuk, Yu. Yatsuk, O. Ivakhiv, R. Matviiv, "Voltage and Resistance Calibrators for Verification of Industrial Instrument Applications", in Proc. Metrol. Com. of Katowice branch of Pol. Acad. Sciences. Series: Conf. no. 21, 12th Conference "Problems and Progress in Metrology", Szczyrk, Poland, pp. 114–117, 2016.
dc.relation.referencesen[27] F. Goerlandt, N. Khakzad, G. Reniers, "Validity and validation of safety-related quantitative risk analysis: A review", Safety Science, Vol. 99, Part B, p. 127–139, 2017.
dc.relation.referencesen[28] ISO/IEC Guide 98-6:2021 Uncertainty of measurement - Part 6: Developing and using measurement models.
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.volume82
dc.citation.issue2
dc.citation.spage38
dc.citation.epage45
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Вимірювальна техніка та метрологія. – 2021. – Випуск 82, №1

Files in This Item:
File Description SizeFormat 
2021v82n2_Mykyichuk_M-Material_testing_and_results_38-45.pdf637.21 kBAdobe PDFView/Open
2021v82n2_Mykyichuk_M-Material_testing_and_results_38-45__COVER.png1.45 MBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.