Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56826
Title: Parallelization of RSA cryptographic algorithm based on CUDA technologies
Authors: Mochurad, Lesia
Kryvenchuk, Yuriy
Yatsyshyn, Svyatoslav
Affiliation: Lviv Polytechnic National University
Bibliographic description (Ukraine): Mochurad L. Parallelization of RSA cryptographic algorithm based on CUDA technologies / Lesia Mochurad, Yuriy Kryvenchuk, Svyatoslav Yatsyshyn // Measuring equipment and metrology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 82. — No 2. — P. 5–9.
Bibliographic description (International): Mochurad L. Parallelization of RSA cryptographic algorithm based on CUDA technologies / Lesia Mochurad, Yuriy Kryvenchuk, Svyatoslav Yatsyshyn // Measuring equipment and metrology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 82. — No 2. — P. 5–9.
Is part of: Вимірювальна техніка та метрологія, 2 (82), 2021
Measuring equipment and metrology, 2 (82), 2021
Journal/Collection: Вимірювальна техніка та метрологія
Issue: 2
Volume: 82
Issue Date: 23-Feb-2021
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
DOI: https://doi.org/10.23939/istcmtm2021.02.005
Keywords: The public key algorithm
Graphics processor
Efficiency indicator
OpenMP standard
Number of pages: 5
Page range: 5-9
Start page: 5
End page: 9
Abstract: The paper examines the efficiency of the application of CUDA technologies for the parallelization of the cryptographic algorithm with the public key. The speed of execution of several implementations of the algorithm is compared: sequential implementation on the CPU and two parallel implementations – on the CPU and GPU. A description of the public key algorithm is presented, as well as properties that allow it to be parallelized. The advantages and disadvantages of parallel implementations are analyzed. It is shown that each of them can be suitable for different scenarios. The software was developed and several numerical experiments were performed. The reliability of the obtained results of encryption and decryption is confirmed. To eliminate the influence of external factors at the time of execution the algorithm was tested ten times in a row and the average value was calculated. Acceleration coefficients for message encryption and decryption algorithms were estimated based on OpenMP and CUDA technology. The proposed approach focuses on the possibility of further optimization through the prospects of developing a multi-core architecture of computer systems and graphic processors.
URI: https://ena.lpnu.ua/handle/ntb/56826
Copyright owner: © Національний університет “Львівська політехніка”, 2021
URL for reference material: https://developer.nvidia.com/cuda-zone
References (Ukraine): [1] H. Sutter, “The free lunch is over: A Fundamental Turn Toward Concurrency in Software”, Dr. Dobb’s Journal, vol. 30, no. 3, p.7, 2005.
[2] M. Balandin, E. Shurina, “The Methods for Solving High-dimensional SLAE”, NSTU, pp. 28–35, 2000.
[3] B. Chapman, G. Jost, “Ruud van der Pas: Using OpenMP: portable shared memory parallel programming”, Sc. and Eng. Comp., Cambridge, pp. 164–172, 2008.
[4] L. Mochurad, N. Boyko, V.Sheketa, “Parallelization of the Process of Calculating the Optimal Route for a Strike Aircraft Flight”, Proc. of 2nd Int. Workshop on Control, pp. 63–75, 2020.
[5] C. Yang, C. Huang, C. Lin, “Hybrid CUDA, OpenMP, and MPI parallel programming on multicore GPU clusters”, Comp. phys. com., vol. 1, pp. 266–269, 2011.
[6] A. Grama, A. Gupta, G. Karypis, V. Kumar, “Introduction to Parallel Computing”, Addison Wesley, p. 856, 2003.
[7] L. Mochurad, N. Boyko, “Technologies of distributed systems and parallel computation:”, Publ. House “Bona”, 2020.
[8] R. Farber, “CUDA Application Design and Development”, Morgan Kaufmann, p. 336, 2011.
[9] J. Sanders, E. Kandrot, “CUDA by Example: An Introduction to General Purpose GPU Programming”, Addison-Wesley Professional, p. 312, 2010.
[10] S. Barychev, V. Honcharov, R. Serov, “Fundamentals of Modern Cryptography: A Textbook”, RF: Hot Line, 2002.
[11] A. Metolkin, V. Kardashuk, “Studies of the Methods of enhancing the cryptographic stability”, Bull East-Ukr. University named after V. Dal, vol. 6, pp. 90–95, 2018 (in Ukr.).
[12] Official page of CUDA technologies, 2020. [Online]. Available: https://developer.nvidia.com/cuda-zone.
[13] O. Klochko, E. Kovalenko, “RSA Data encryption algorithm”, J.: Science, technics and education, vol 3, pp. 1–11, 2016.
[14] S. Prasanth, K. Jegadish, B. Partibane, “Efficient Modular Exponentiation Architectures for RSA Algorithm”, Int. J. Eng. Res. in Electronic and Com. Eng., vol. 3, no. 5, pp. 230–234, 2016.
[15] S. Saxena, B. Kapoor, “State of the Art Parallel Approaches for RSA Public Key Based Cryptosystem”, Int. J. on Comp. Sc. & Appl. (IJCSA), Vol. 5, No. 1, Febr. 2015.
[16] D. Chang, M. Kantardzic, M. Ouyang, “Hierarchical Clustering with CUDA/GPU”, ISCA PDCCS, pp. 7–12, 2009.
[17] L. Mochurad, N. Boyko, N. Stanasiuk, “Forecasting stock prices and accounting for stock market on multicore computers”, Int. Workshop on Conflict Man. in Glob. Inf. Networks, pp. 276–289, 2019.
References (International): [1] H. Sutter, "The free lunch is over: A Fundamental Turn Toward Concurrency in Software", Dr. Dobb’s Journal, vol. 30, no. 3, p.7, 2005.
[2] M. Balandin, E. Shurina, "The Methods for Solving High-dimensional SLAE", NSTU, pp. 28–35, 2000.
[3] B. Chapman, G. Jost, "Ruud van der Pas: Using OpenMP: portable shared memory parallel programming", Sc. and Eng. Comp., Cambridge, pp. 164–172, 2008.
[4] L. Mochurad, N. Boyko, V.Sheketa, "Parallelization of the Process of Calculating the Optimal Route for a Strike Aircraft Flight", Proc. of 2nd Int. Workshop on Control, pp. 63–75, 2020.
[5] C. Yang, C. Huang, C. Lin, "Hybrid CUDA, OpenMP, and MPI parallel programming on multicore GPU clusters", Comp. phys. com., vol. 1, pp. 266–269, 2011.
[6] A. Grama, A. Gupta, G. Karypis, V. Kumar, "Introduction to Parallel Computing", Addison Wesley, p. 856, 2003.
[7] L. Mochurad, N. Boyko, "Technologies of distributed systems and parallel computation:", Publ. House "Bona", 2020.
[8] R. Farber, "CUDA Application Design and Development", Morgan Kaufmann, p. 336, 2011.
[9] J. Sanders, E. Kandrot, "CUDA by Example: An Introduction to General Purpose GPU Programming", Addison-Wesley Professional, p. 312, 2010.
[10] S. Barychev, V. Honcharov, R. Serov, "Fundamentals of Modern Cryptography: A Textbook", RF: Hot Line, 2002.
[11] A. Metolkin, V. Kardashuk, "Studies of the Methods of enhancing the cryptographic stability", Bull East-Ukr. University named after V. Dal, vol. 6, pp. 90–95, 2018 (in Ukr.).
[12] Official page of CUDA technologies, 2020. [Online]. Available: https://developer.nvidia.com/cuda-zone.
[13] O. Klochko, E. Kovalenko, "RSA Data encryption algorithm", J., Science, technics and education, vol 3, pp. 1–11, 2016.
[14] S. Prasanth, K. Jegadish, B. Partibane, "Efficient Modular Exponentiation Architectures for RSA Algorithm", Int. J. Eng. Res. in Electronic and Com. Eng., vol. 3, no. 5, pp. 230–234, 2016.
[15] S. Saxena, B. Kapoor, "State of the Art Parallel Approaches for RSA Public Key Based Cryptosystem", Int. J. on Comp. Sc. & Appl. (IJCSA), Vol. 5, No. 1, Febr. 2015.
[16] D. Chang, M. Kantardzic, M. Ouyang, "Hierarchical Clustering with CUDA/GPU", ISCA PDCCS, pp. 7–12, 2009.
[17] L. Mochurad, N. Boyko, N. Stanasiuk, "Forecasting stock prices and accounting for stock market on multicore computers", Int. Workshop on Conflict Man. in Glob. Inf. Networks, pp. 276–289, 2019.
Content type: Article
Appears in Collections:Вимірювальна техніка та метрологія. – 2021. – Випуск 82, №1

Files in This Item:
File Description SizeFormat 
2021v82n2_Mochurad_L-Parallelization_of_RSA_cryptographic_5-9.pdf216.48 kBAdobe PDFView/Open
2021v82n2_Mochurad_L-Parallelization_of_RSA_cryptographic_5-9__COVER.png1.48 MBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.