Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56809
Title: The Approach to Creating the Recommendation System of Piano Pieces
Authors: Holshtein, Maiia
Babkova, Nadiia
Affiliation: National Technical University "Kharkiv Polytechnic Institute"
Bibliographic description (Ukraine): Holshtein M. The Approach to Creating the Recommendation System of Piano Pieces / Maiia Holshtein, Nadiia Babkova // Computational linguistics and intelligent systems, 22-23 April 2021, Kharkiv. — Lviv ; Kharkiv, 2021. — Vol Vol. II : Proceedings of the 5th International conference, COLINS 2021, Workshop, Kharkiv, Ukraine, April 22-23. — P. 102–104.
Bibliographic description (International): Holshtein M. The Approach to Creating the Recommendation System of Piano Pieces / Maiia Holshtein, Nadiia Babkova // Computational linguistics and intelligent systems, 22-23 April 2021, Kharkiv. — Lviv ; Kharkiv, 2021. — Vol Vol. II : Proceedings of the 5th International conference, COLINS 2021, Workshop, Kharkiv, Ukraine, April 22-23. — P. 102–104.
Is part of: Computational linguistics and intelligent systems, 2021
Issue Date: 4-May-2021
Place of the edition/event: Львів ; Харків
Lviv ; Kharkiv
Temporal Coverage: 22-23 April 2021, Kharkiv
Keywords: Recommendation systems
machine learning
PMI
collocations
musical art
piano pieces
classification
Number of pages: 3
Page range: 102-104
Start page: 102
End page: 104
Abstract: Nowadays a lot of descriptions of pieces of musical art can be found in Internet or in specialized collections. There is no recommendation system that offers certain composition for performance according to its difficulty level. This paper suggests the approach to creating the recommendation system of piano pieces. The approach is based on checking for collocations in descriptions of each composition. This paper shows the statistical method PMI used for searching the collocations indicating on certain difficulty level. In addition it also discusses the main problems during creating own recommendation system.
URI: https://ena.lpnu.ua/handle/ntb/56809
ISSN: 2523-4013
Copyright owner: copyrighted by its editors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
© 2021 Copyright for the individual papers by the papers’ authors. Copying permitted only for private and academic purposes. This volume is published and
URL for reference material: https://www.kdnuggets.com/2019/09/machine-learning-recommender-systems.html
https://wz.lviv.ua/blogs/388693-yakvyrvatysia-z-informatsiinoi-bulbashky
https://doi.org/10.1109/mic.2003.1167344
https://doi.org/10.26906/SUNZ.2018.4.120
https://doi.org/10.15587/1729-4061.2019.175507
https://py.plainenglish.io/collocation-discoverywith-pmi-3bde8f351833
References (Ukraine): [1] An Easy Introduction to Machine Learning Recommendation Systems, 2021. URL: https://www.kdnuggets.com/2019/09/machine-learning-recommender-systems.html.
[2] Yak-vyrvatysia-z-informatsiinoi-bulbashky, 2020. URL: https://wz.lviv.ua/blogs/388693-yakvyrvatysia-z-informatsiinoi-bulbashky
[3] Linden G., Smith B., York J. Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 2003. 7 (1), 76–80. doi: https://doi.org/10.1109/mic.2003.1167344
[4] Meleshko Y. V. Problemy recomendatsiynykh system ta metody yikh rishennia, Systemy upravlinnia, navigatsii ta zvyazku. 4, 2018: 120 – 124. doi: https://doi.org/10.26906/SUNZ.2018.4.120
[5] V.V. Lytvyn, V. A. Vysotska, V. V. Shatskykh, I. V. Kogut, O. S. Petruchenko, L.V. Dziubyk, V. V. Bobrivets, V. M. Panasiuk, S. I. Sachenko and M. P. Komar. Design of a recommendation system based on collaborative filtering and machine learning considering personal needs of the user. Eastern-European Journal of Enterprise Technologies, 2019. 4(2 (100), 6–28. https://doi.org/10.15587/1729-4061.2019.175507
[6] Collocation discovery with PMI, 2020. URL: https://py.plainenglish.io/collocation-discoverywith-pmi-3bde8f351833
References (International): [1] An Easy Introduction to Machine Learning Recommendation Systems, 2021. URL: https://www.kdnuggets.com/2019/09/machine-learning-recommender-systems.html.
[2] Yak-vyrvatysia-z-informatsiinoi-bulbashky, 2020. URL: https://wz.lviv.ua/blogs/388693-yakvyrvatysia-z-informatsiinoi-bulbashky
[3] Linden G., Smith B., York J. Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 2003. 7 (1), 76–80. doi: https://doi.org/10.1109/mic.2003.1167344
[4] Meleshko Y. V. Problemy recomendatsiynykh system ta metody yikh rishennia, Systemy upravlinnia, navigatsii ta zvyazku. 4, 2018: 120 – 124. doi: https://doi.org/10.26906/SUNZ.2018.4.120
[5] V.V. Lytvyn, V. A. Vysotska, V. V. Shatskykh, I. V. Kogut, O. S. Petruchenko, L.V. Dziubyk, V. V. Bobrivets, V. M. Panasiuk, S. I. Sachenko and M. P. Komar. Design of a recommendation system based on collaborative filtering and machine learning considering personal needs of the user. Eastern-European Journal of Enterprise Technologies, 2019. 4(2 (100), 6–28. https://doi.org/10.15587/1729-4061.2019.175507
[6] Collocation discovery with PMI, 2020. URL: https://py.plainenglish.io/collocation-discoverywith-pmi-3bde8f351833
Content type: Article
Appears in Collections:Computational linguistics and intelligent systems. – 2021 р.

Files in This Item:
File Description SizeFormat 
2021vVol_II___Proceedings_of_the_5th_International_conference_COLINS_2021_Workshop_Kharkiv_Ukraine_April_22-23_Holshtein_M-The_Approach_to_Creating_102-104.pdf309.7 kBAdobe PDFView/Open
2021vVol_II___Proceedings_of_the_5th_International_conference_COLINS_2021_Workshop_Kharkiv_Ukraine_April_22-23_Holshtein_M-The_Approach_to_Creating_102-104__COVER.png949.77 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.