Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56806
Title: Unsupervised Open Relation Extraction
Authors: Tarasenko, Yaroslav
Petrasova, Svitlana
Affiliation: National Technical University “Kharkiv Polytechnic Institute”
Bibliographic description (Ukraine): Tarasenko Y. Unsupervised Open Relation Extraction / Yaroslav Tarasenko, Svitlana Petrasova // Computational linguistics and intelligent systems, 22-23 April 2021, Kharkiv. — Lviv ; Kharkiv, 2021. — Vol Vol. II : Proceedings of the 5th International conference, COLINS 2021, Workshop, Kharkiv, Ukraine, April 22-23. — P. 93–94.
Bibliographic description (International): Tarasenko Y. Unsupervised Open Relation Extraction / Yaroslav Tarasenko, Svitlana Petrasova // Computational linguistics and intelligent systems, 22-23 April 2021, Kharkiv. — Lviv ; Kharkiv, 2021. — Vol Vol. II : Proceedings of the 5th International conference, COLINS 2021, Workshop, Kharkiv, Ukraine, April 22-23. — P. 93–94.
Is part of: Computational linguistics and intelligent systems, 2021
Issue Date: 4-May-2021
Place of the edition/event: Львів ; Харків
Lviv ; Kharkiv
Temporal Coverage: 22-23 April 2021, Kharkiv
Keywords: Information Extraction
Open Relation Extraction
semantic relation
TF-IDF
parsing
cluster analysis
Number of pages: 2
Page range: 93-94
Start page: 93
End page: 94
Abstract: The paper describes an approach to open relation extraction based on unsupervised machine learning. The state-of-the-art methods for extracting semantic relations are analyzed. The algorithm of automatic open relation extraction using statistical, syntactic and contextual information is proposed. The results of the study can be used in information retrieval, summarization, machine translation, question-answering systems, etc.
URI: https://ena.lpnu.ua/handle/ntb/56806
ISSN: 2523-4013
Copyright owner: copyrighted by its editors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
© 2021 Copyright for the individual papers by the papers’ authors. Copying permitted only for private and academic purposes. This volume is published and
URL for reference material: https://doi.org/10.1155/2018/4929674
http://www.isa.ru/aidt/images/documents/2018-02/47-61.pdf
References (Ukraine): [1] O. Shanidze, S. Petrasova, Extraction of Semantic Relations from Wikipedia Text Corpus, in: Proceedings of 3rd International Conference: Computational Linguistics and Intelligent Systems (CoLInS 2019), Kharkiv, Ukraine, 2019, pp. P. 74–75.
[2] Peiqian Liu, Xiaojie Wang, A Semieager Classifier for Open Relation Extraction, in: Mathematical Problems in Engineering, 2018. doi: https://doi.org/10.1155/2018/4929674.
[3] F. Petroni, L.D. Corro, R. Gemulla, CORE: Context-Aware Open Relation Extraction with Factorization Machines, in: Association for Computational Linguistics, 2015. doi: 10.18653/v1/d15-1204
[4] A.O. Shelmanov, V.A. Isakov, M.A. Stankevich, I.V. Smirnov, Open information extraction from texts. Part I. Statement of the problem and overview of methods, in: Artificial Intelligence And Decision Making, 2018, pp. 47-61. URL: http://www.isa.ru/aidt/images/documents/2018-02/47-61.pdf
[5] D.S. Batista, B. Martins, M. J. Silva, Semi-supervised bootstrapping of relationship extractors with distributional semantics, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, pp. 499–504.
References (International): [1] O. Shanidze, S. Petrasova, Extraction of Semantic Relations from Wikipedia Text Corpus, in: Proceedings of 3rd International Conference: Computational Linguistics and Intelligent Systems (CoLInS 2019), Kharkiv, Ukraine, 2019, pp. P. 74–75.
[2] Peiqian Liu, Xiaojie Wang, A Semieager Classifier for Open Relation Extraction, in: Mathematical Problems in Engineering, 2018. doi: https://doi.org/10.1155/2018/4929674.
[3] F. Petroni, L.D. Corro, R. Gemulla, CORE: Context-Aware Open Relation Extraction with Factorization Machines, in: Association for Computational Linguistics, 2015. doi: 10.18653/v1/d15-1204
[4] A.O. Shelmanov, V.A. Isakov, M.A. Stankevich, I.V. Smirnov, Open information extraction from texts. Part I. Statement of the problem and overview of methods, in: Artificial Intelligence And Decision Making, 2018, pp. 47-61. URL: http://www.isa.ru/aidt/images/documents/2018-02/47-61.pdf
[5] D.S. Batista, B. Martins, M. J. Silva, Semi-supervised bootstrapping of relationship extractors with distributional semantics, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, pp. 499–504.
Content type: Article
Appears in Collections:Computational linguistics and intelligent systems. – 2021 р.

Files in This Item:
File Description SizeFormat 
2021vVol_II___Proceedings_of_the_5th_International_conference_COLINS_2021_Workshop_Kharkiv_Ukraine_April_22-23_Tarasenko_Y-Unsupervised_Open_Relation_93-94.pdf247.72 kBAdobe PDFView/Open
2021vVol_II___Proceedings_of_the_5th_International_conference_COLINS_2021_Workshop_Kharkiv_Ukraine_April_22-23_Tarasenko_Y-Unsupervised_Open_Relation_93-94__COVER.png945.32 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.