Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56595
Title: Minimization of traffic delay in traffic flows with coordinated control
Other Titles: Мінімізація затримки руху у транспортних потоках за координованого управління
Authors: Royko, Yuriy
Yevchuk, Yurii
Bura, Romana
Affiliation: Lviv Polytechnic National University
Bibliographic description (Ukraine): Royko Y. Minimization of traffic delay in traffic flows with coordinated control / Yuriy Royko, Yurii Yevchuk, Romana Bura // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 2. — No 2. — P. 30–41.
Bibliographic description (International): Royko Y. Minimization of traffic delay in traffic flows with coordinated control / Yuriy Royko, Yurii Yevchuk, Romana Bura // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 2. — No 2. — P. 30–41.
Is part of: Transport Technologies, 2 (2), 2021
Issue: 2
Issue Date: 1-Mar-2021
Publisher: Видавництво Національного університету “Львівська політехніка”
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
DOI: https://doi.org/10.23939/tt2021.02.030
Keywords: транспортні дослідження
транспортний потік
координоване управління рухом
тривалість світлофорного циклу
магістральна вулиця
імітаційне моделювання
жорстке програмне управління
інтенсивність руху
склад транспортного потоку
transport research
traffic flow
coordinated traffic control
traffic light cycle duration
arterial street
simulation modelling
fixed-time program control
traffic flow composition
Number of pages: 12
Page range: 30-41
Start page: 30
End page: 41
Abstract: У роботі розглянуто методику та результати транспортних досліджень, проведених методом натурних вимірювань, з визначення основних показників транспортних потоків зі значною нерівномірністю руху на магістральній вулиці в умовах координованого управління. Використовуючи метод імітаційного моделювання, визначено часові параметри світлофорного регулювання, за яких досягається зменшення затримки руху у прямому за зустрічному транспортному потоці шляхом зміни тривалості дозвільного сигналу залежно від величини інтенсивності руху. Зміна (збільшення) тривалості дозвільного сигналу забезпечує беззупинний рух групи транспортних засобів під час їх проїзду через стоп-лінії на світлофорних об’єктах. Запропонований метод актуальний до застосування на ділянках транспортної мережі з координованим управлінням, де є значна неоднорідність транспортного потоку, і запобігає розпаду груп, які складаються із транспортних засобів з різними динамічними характеристиками. Такий результат досягається у випадку, коли в системі автоматизованого управління, яка об’єднує суміжні перехрестя на магістральній вулиці, діє жорстке програмне управління світлофорною сигналізацією. За такої умови є можливість узгодити тривалість сигналів світлофорних груп, коректуючи ширину (тривалість дозвільного сигналу) та кут нахилу (швидкість руху) стрічки часу у графіках координації. Наукова новизна цього дослідження полягає в тому, що набув подальшого розвитку метод мінімізації затримки транспорту в умовах координованого управління, суть якого полягає у керованій зміні діапазону тривалості дозвільного сигналу за одночасного управління швидкістю руху між суміжними перехрестями. Практична цінність – застосування різних програм управління світлофорною сигналізацією на ділянках магістральних вулиць у транспортних районах, де у ранішній та вечірній пікові періоди є значна відмінність значень інтенсивності руху за напрямками.
The method and results of transport research, carried out by field research method, on the determination of the main indicators of traffic flows with significant unevenness of the movement on the arterial street in conditions of coordinated control is reviewed in the paper. Time parameters of traffic light control for which a reduction in traffic delay is achieved in direct and opposite traffic flow by the change of permissive signal depending on traffic intensity are determined using the simulation method. Change (increase) of the duration of the permissive signal provides uninterrupted movement of vehicles` group during their passage of stop-line at traffic light objects. The proposed method can be used on sections of transport networks with coordinated control, where there is significant heterogeneity of traffic flow, and it prevents the dissipation of groups that consist of vehicles with different dynamic characteristics. Such a result is being performed in the case when in the system of automated control, which combines adjacent intersections on an arterial street, fixed-time program control of traffic light signalization is operating. In this condition, there is a possibility to adjust the duration of signals of traffic light groups by correcting the width (permissive signal duration) and angle of inclination (speed of movement) of the timeline in coordination graphs. The scientific novelty of this research is that the method of traffic delay minimization in conditions of coordinated control acquired further development. The essence of the method is in the controlled change of the range of permissive signal duration in conditions of simultaneous control of the speed of movement between adjacent intersections. Practical value is the application of different programs of traffic light control on sections of arterial streets in transport districts where a significant difference of values of traffic intensity by directions is in morning and evening peak periods.
URI: https://ena.lpnu.ua/handle/ntb/56595
Copyright owner: © Національний університет “Львівська політехніка”, 2021
© Yu. Royko, Yu. Yevchuk, R. Bura, 2021
References (Ukraine): 1. Currie, G., Sarvi, M., & Young, W. (2007). Balanced Road Space Allocation: A Comprehensive Approach. ITE Journal on the Web, 75–83 (in English).
2. Abramova, L. (2019). Osoblyvosti modelyuvannya hrupovoho rukhu transportnykh zasobiv u mistakh [Features of modeling of group movement of vehicles in cities], International scientific and practical conference “Scientific achievements of modern society”. Liverpool, United Kingdom, 8–16 (in Ukrainian).
3. Krystopchuk, M., Khitrov, I., Tson, O., & Pochuzhevskyy, O. (2021). Doslidzhennya koordynovanoho upravlinnya transportnymy potokamy v tsentralʹniy chastyni mista [Study of coordinated traffic management in the central part of the city]. Suchasni tekhnolohiyi v mashynobuduvanni ta transporti [Advances in mechanical engineering and transport], Volume 1(16). 82–90 doi: 10.36910/automash.v1i16.511 (in Ukrainian).
4. Kulyk, M., & Shyrin, V. (2019). Zabezpechennya staloyi shvydkosti transportnykh potokiv v rezhymi koordynovanoho upravlinni na misʹkykh mahistralyakh [Ensuring a constant speed of traffic flows in the mode of coordinated management on urban highways], Materialy IV mizhnarodnoyi naukovo-praktychnoyi konferentsiyi “Bezpeka na transporti – osnova efektyvnoyi infrastruktury: problemy ta perspektyvy” [Proceedings of the IV International scientific and practical conference on “Safety in transport – basis efficient infrastructure: problems and prospects”]. pp 238–241 (in Ukrainian).
5. Chen, C., Che, X., Huang, W., & Li, K. (2019). A two-way progression model for arterial signal coordination considering side-street turning traffic. Transportmetrica B, 1627–1650 doi: 10.1080/21680566.2019.1672590 (in English).
6. Canadian Capacity Guide for Signalized Intersections. (2008). Ottawa: Institute of Transportation Engineers (in English).
7. Signal Timing Manual. (2015). Second Edition. NCHRP Report 812. National Cooperative Highway Research Program. In Cooperation with U.S. Department of Transportation Federal Highway Administration (in English).
8. Gartner, N., Pooran, F., & Andrews, C. (2002). Implementation and Field Testing of the OPAC Adaptive Control Strategy in RT-TRACS, Proc. Of 81st Annual Meeting of the TRB. Oakland, CA, USA: IEEE, 148–156 doi :10.1109/ITSC.2001.948655 (in English).
9. Gorbachov, P., Makarichev, O., & Shevchenko, V. (2021). Imovirnistʹ vynyknennya nepovnoyi pachky avtomobiliv pry koordynovanomu keruvanni na misʹkiy mahistrali [The probability of an incomplete pack of cars with coordinated driving on the city highway]. Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu [Bulletin of Kharkiv National Automobile and Highway University], 92, 214–225 doi: 10.30977/BUL.2219-5548.2021.92.1.214 (in Ukrainian).
10. Ryabushenko, O., Nagluk, I., Shevtsov, D. (2019). Doslidzhennya rezhymu rukhu avtomobilya v umovakh mista za danymy GPS treku [The research of the driving mode of the vehicle in the urban conditions according to GPS track]. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva [Bulletin of Kharkiv Petro Vasylenko National Technical University of Agriculture], 198, 448–456. (in Ukrainian)
11. Ji, Y., Tang, Y., Wang, W., & Du, Y. (2018). Tram-Oriented Traffic Signal Timing Resynchronization. Journal of Advanced Transportation. Volume 2018. doi: 10.1155/2018/8796250 (in English).
12. Shi, J., Sun, Y., Schonfeld, P., & Qi, J. (2017). Joint optimization of tram timetables and signal timing adjustments at intersections. Transportation Research Part C: Emerging Technologies. Volume 83. 104–119. doi: 10.1016/j.trc.2017.07.014 (in English).
13. Zhou, L., Wang, Yi., & Liu, Ya. (2017). Active signal priority control method for bus rapid transit based on Vehicle Infrastructure Integration. International Journal of Transportation Science and Technology. Volume 6(2). 99–109. doi: 10.1016/j.ijtst.2017.06.001 (in English).
14. Vrubel, Yu.A (2007). Issledovania v dorozhnem dvizhenii: uchebno-metodicheskoe posobie k laboratornym rabotam [Research in traffic: study guide for laboratory work]. Minsk: BNTU (in Russian).
15. Scheffler, R., & Strehler, M. (2017). Optimizing traffic signal settings for public transport priority. Proc. of the 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (pp. 9:1–9:15) – Vienna, Austria. doi: 10.4230/OASIcs.ATMOS.2017 (in).
References (International): 1. Currie, G., Sarvi, M., & Young, W. (2007). Balanced Road Space Allocation: A Comprehensive Approach. ITE Journal on the Web, 75–83 (in English).
2. Abramova, L. (2019). Osoblyvosti modelyuvannya hrupovoho rukhu transportnykh zasobiv u mistakh [Features of modeling of group movement of vehicles in cities], International scientific and practical conference "Scientific achievements of modern society". Liverpool, United Kingdom, 8–16 (in Ukrainian).
3. Krystopchuk, M., Khitrov, I., Tson, O., & Pochuzhevskyy, O. (2021). Doslidzhennya koordynovanoho upravlinnya transportnymy potokamy v tsentralʹniy chastyni mista [Study of coordinated traffic management in the central part of the city]. Suchasni tekhnolohiyi v mashynobuduvanni ta transporti [Advances in mechanical engineering and transport], Volume 1(16). 82–90 doi: 10.36910/automash.v1i16.511 (in Ukrainian).
4. Kulyk, M., & Shyrin, V. (2019). Zabezpechennya staloyi shvydkosti transportnykh potokiv v rezhymi koordynovanoho upravlinni na misʹkykh mahistralyakh [Ensuring a constant speed of traffic flows in the mode of coordinated management on urban highways], Materialy IV mizhnarodnoyi naukovo-praktychnoyi konferentsiyi "Bezpeka na transporti – osnova efektyvnoyi infrastruktury: problemy ta perspektyvy" [Proceedings of the IV International scientific and practical conference on "Safety in transport – basis efficient infrastructure: problems and prospects"]. pp 238–241 (in Ukrainian).
5. Chen, C., Che, X., Huang, W., & Li, K. (2019). A two-way progression model for arterial signal coordination considering side-street turning traffic. Transportmetrica B, 1627–1650 doi: 10.1080/21680566.2019.1672590 (in English).
6. Canadian Capacity Guide for Signalized Intersections. (2008). Ottawa: Institute of Transportation Engineers (in English).
7. Signal Timing Manual. (2015). Second Edition. NCHRP Report 812. National Cooperative Highway Research Program. In Cooperation with U.S. Department of Transportation Federal Highway Administration (in English).
8. Gartner, N., Pooran, F., & Andrews, C. (2002). Implementation and Field Testing of the OPAC Adaptive Control Strategy in RT-TRACS, Proc. Of 81st Annual Meeting of the TRB. Oakland, CA, USA: IEEE, 148–156 doi :10.1109/ITSC.2001.948655 (in English).
9. Gorbachov, P., Makarichev, O., & Shevchenko, V. (2021). Imovirnistʹ vynyknennya nepovnoyi pachky avtomobiliv pry koordynovanomu keruvanni na misʹkiy mahistrali [The probability of an incomplete pack of cars with coordinated driving on the city highway]. Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu [Bulletin of Kharkiv National Automobile and Highway University], 92, 214–225 doi: 10.30977/BUL.2219-5548.2021.92.1.214 (in Ukrainian).
10. Ryabushenko, O., Nagluk, I., Shevtsov, D. (2019). Doslidzhennya rezhymu rukhu avtomobilya v umovakh mista za danymy GPS treku [The research of the driving mode of the vehicle in the urban conditions according to GPS track]. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva [Bulletin of Kharkiv Petro Vasylenko National Technical University of Agriculture], 198, 448–456. (in Ukrainian)
11. Ji, Y., Tang, Y., Wang, W., & Du, Y. (2018). Tram-Oriented Traffic Signal Timing Resynchronization. Journal of Advanced Transportation. Volume 2018. doi: 10.1155/2018/8796250 (in English).
12. Shi, J., Sun, Y., Schonfeld, P., & Qi, J. (2017). Joint optimization of tram timetables and signal timing adjustments at intersections. Transportation Research Part C: Emerging Technologies. Volume 83. 104–119. doi: 10.1016/j.trc.2017.07.014 (in English).
13. Zhou, L., Wang, Yi., & Liu, Ya. (2017). Active signal priority control method for bus rapid transit based on Vehicle Infrastructure Integration. International Journal of Transportation Science and Technology. Volume 6(2). 99–109. doi: 10.1016/j.ijtst.2017.06.001 (in English).
14. Vrubel, Yu.A (2007). Issledovania v dorozhnem dvizhenii: uchebno-metodicheskoe posobie k laboratornym rabotam [Research in traffic: study guide for laboratory work]. Minsk: BNTU (in Russian).
15. Scheffler, R., & Strehler, M. (2017). Optimizing traffic signal settings for public transport priority. Proc. of the 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (pp. 9:1–9:15) – Vienna, Austria. doi: 10.4230/OASIcs.ATMOS.2017 (in).
Content type: Article
Appears in Collections:Transport Technologies. – 2021. – Vol. 2, No. 2

Files in This Item:
File Description SizeFormat 
2021v2n2_Royko_Y-Minimization_of_traffic_delay_30-41.pdf2.47 MBAdobe PDFView/Open
2021v2n2_Royko_Y-Minimization_of_traffic_delay_30-41__COVER.png454.97 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.