Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56588
Title: Application of AHP and GRA methods in Energy Efficiency Potential’s Assessment of Envelopes from Natural Materials
Other Titles: Використання методу аналізу ієрархій (AHP) та сірого реляційного аналізу (GRA) для оцінки енергоефективності огороджувальних конструкцій з природних матеріалів
Authors: Бікс, Ю. С.
Ратушняк, Г. С.
Ратушняк, О. Г.
Ряполов, П. С.
Biks, Yuriy
Ratushnyak, Georgiy
Ratushnyak, Olga
Ryapolov, Pavlo
Affiliation: Вінницький національний технічний університет
Vinnytsia National Technical University
Bibliographic description (Ukraine): Application of AHP and GRA methods in Energy Efficiency Potential’s Assessment of Envelopes from Natural Materials / Yuriy Biks, Georgiy Ratushnyak, Olga Ratushnyak, Pavlo Ryapolov // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 48–62.
Bibliographic description (International): Application of AHP and GRA methods in Energy Efficiency Potential’s Assessment of Envelopes from Natural Materials / Yuriy Biks, Georgiy Ratushnyak, Olga Ratushnyak, Pavlo Ryapolov // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 48–62.
Is part of: Theory and Building Practice, 2 (2), 2020
Issue: 2
Issue Date: 23-Mar-2020
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
DOI: doi.org/10.23939/jtbp2020.02.048
Keywords: МАІ
потенціал енергоефективності
огороджувальні конструкції
метод с узагальнений індекс потенціалу
СРА
багатокритеріальна оцінка
теплотехнічні характеристики
AHP method
energy efficiency potential
envelope structures
GRA method
multicriterial assessment
thermal performance
Number of pages: 15
Page range: 48-62
Start page: 48
End page: 62
Abstract: Найкращий вибір енергоефективних огороджувальних конструкцій з різноманітних доступних матеріалів залишається проблемою. Тому в цій роботі проведена спроба багатокритеріальної оцінки теплотехнічних характеристик деяких будівельних матеріалів природного походження для енергоефективних огороджувальних конструкцій. Наступні типи стін з природних енергоефективних матеріалів розглянуто в порівняльній оцінці: арболіт, саман, панель із солом’яних блоків, землебит, чуркобетон, СІП панель з ековатою, арболіт+солома та енергоефективний теплоблок. Проаналізовано вплив часу теплової інерції τ, теплоємності внутрішньої площі, показника теплової інерції D, загальної величини термічного опору Rtot, вартості матеріалів стін та їхню вагу. Багатокритеріальну чисельну оцінку потенціалу енергоефективності огороджувальної конструкції проводили двома популярними методами – методом аналізу ієрархій (МАІ) як суб’єктивним методом та методом сірого реляційного аналізу (СРА) як об’єктивним методом. Обидва методи дозволяють упорядкувати альтернативи та можуть бути застосовані як інструменти підтримки прийняття рішень у процесі прийняття рішень у виборі найкращої альтернативи з точки зору багатокритеріальної оцінки. Проведені за двома незалежними методиками дослідження показали, що найкращим типом огороджувальної конструкції з точки зору запропонованих критеріїв, є стіна з арболіту а також з арболіту+соломи, майже втричі менший потенціал має стіна із землебиту. Стіни з чуркобетону, енергоефективного теплоблоку та солом’яних панелей, що оцінені за двома методиками мають практично однаковий узагальнений індекс потенціалу енергоефективності. Для більш об’єктивного аналізу, беручи до уваги різноманітність фізичних та фізико-механічних параметрів матеріалу огороджувальних конструкцій стін, запропоновано узагальнений індекс потенціалу енергоефективності огороджувальних конструкцій. Оцінка узагальненого індексу потенціалу енергоефективності розрахована за двома методиками показала, що за МАІ показники мають більш неоднорідні значення величин, що може бути пояснено суб’єктивністю в оцінці при проведенні процедури парних порівнянь альтернатив.
The best choice of energy efficient envelope from variety of available materials is still the challenge. Therefore, the attempt of thermal performance multi-criteria evaluation of some building materials of natural origin for energy-efficient envelopes is conducted in present paper. Such types of walls from natural energy-efficient materials are considered in comparison assessment: hempcrete, adobe, strawbale panel, earthbag, cordwood, SIP (plywood+ecofiber), hempcrete+straw and energy efficient block. The influence of thermal inertia time, internal areal heat capacity, as well dimen-sionless index of thermal inertia D, the total thermal resistance of the walls Rtot-value, mass of the wall assembly and its cost have been taken into consideration as important influence factors. The multicriteria numerical assessment of envelope’s energy efficiency potential was performed by two popular methods – Analytic Hierarchy Process (AHP) as the subjective weighting method and Grey Relation Analysis (GRA) as the objective weighting method. Both of methods allow to arrange the alternatives and could be applied as decision support tools in decision making (DM) process of choosing the best alternative in terms of multi-criteria assessment. For more objective analysis, by taking into account the variety of physical and physical-mechanical parameters of the wall assembly material, the concept of generalized index of the envelope energy efficiency potential is proposed. Conducted research has shown that the best envelope type in terms of of generalized index of energy efficiency potential has the hempcrete wall and hemcrete+straw wall, almost three times smaller has the wall of the earthbags. The walls from adobe, cordwood and strawbale panels have practically the equal value of generalized index of energy efficiency potential. It could be observed that AHP method shown more inhomogeneous results, than GRA. The possible reason for that is the difference in evaluation attitude in techniques – AHP is considered as the subjective method with pairwise comparison matrixes, while GRA is objective method of comparison.
URI: https://ena.lpnu.ua/handle/ntb/56588
Copyright owner: © Національний університет “Львівська політехніка”, 2020
© Biks Y., Ratushnyak G., Ratushnyak O., Ryapolov P., 2020
URL for reference material: http://www.itp.nsc.ru/conferences/mzhz_2017/files/Section_02.pdf#page=16
https://www.iso.org/ru/standard/65711.html
https://www.htflux.com/en/free-calculation-tool-for-thermal-mass-of-building-components-iso-13786/
http://www.esru.strath.ac.uk/Documents/89/thermop_rep.pdf
References (Ukraine): Wang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis
aid in sustainable energy decision-making. Renewable and sustainable energy reviews, 13(9), 2263–2278.
doi:10.1016/j.rser.2009.06.021.
Kheiri, F. (2018). A review on optimization methods applied in energy-efficient building geometry and
envelope design. Renewable and Sustainable Energy Reviews, 92, 897–920. doi: 10.1016/j.rser.2018.04.080
Shimray, B. A., Singh, K. M., & Mehta, R. K. (2017). A survey of multi-criteria decision making technique
used in renewable energy planning. International Journal of Computer, 4523, 124–140.
Liu, S., Yang, Y., & Forrest, J. (2017). Grey data analysis. Springer Singapore, Singapore. doi:10(1007), 978–981.
Wang, J. J., Jing, Y. Y., Zhang, C. F., Zhang, X. T., & Shi, G. H. (2008). Integrated evaluation of distributed
triple-generation systems using improved grey incidence approach. Energy, 33(9), 1427–1437. doi: 10.1016/j.energy.2008.04.008.
Hopfe, C. J., Augenbroe, G. L., & Hensen, J. L. (2013). Multi-criteria decision making under uncertainty in
building performance assessment. Building and environment, 69, 81–90. doi: 10.1016/j.buildenv.2013.07.019.
Stazi, F. (2017). Thermal Inertia in Energy Efficient Building Envelopes. Butterworth-Heinemann. doi: 10.1016/B978-0-12-813970-7.00001-7.
Bläsi, W. (2001). Bauphysik. Bibliothek des technischen Wissens. 3 Auflage. Haan: Verlag Europa Lehrmittel.
Ukrainian National Standard. DSTU B.V. 2.6-189: 2013. (2014). Methods of choosing insulation material for
insulation of buildings. Kyiv, Ukraine: Ministry of Regional Development, Construction and Housing and
Communal Services of Ukraine, (in Ukrainian).
Ukrainian National Standard. DSTU-N B. V. 2.6-190: 2013. (2014). An instruction on the estimated estimation of
heat resistance and heat recovery of fencing structures. Kyiv, Ukraine: Ministry of Regional Development,
Construction and Housing and Communal Services of Ukraine, (in Ukrainian).
Filonenko, O. I., Yurin, O. I. (2015). Budivelna a teplofizyka ohorodzhuvalnykh konstruktsii budivel: navch.
posibnyk (Construction and Thermal Physics of Building Enclosures: A manual). Poltava: Poltavskyi natsionalnyi
tekhnichnyi universytet im. Yuriia Kondratiuka (Poltava: Poltava National Technical University named after Yuri
Kondratyuk), (in Ukrainian).
Osobennosti maloetazhnogo energoeffektivnogo ekologicheskogo stroitelstva v raznykh klimaticheskikh
zonakh (Features of low-rise energy-efficient ecological construction in different climatic zones). Retrieved from
http://www.itp.nsc.ru/conferences/mzhz_2017/files/Section_02.pdf#page=16 (in Russian).
Ukrainian Building Code. DBN V. 2.6-31: 2016. (2017). Thermal insulation of buildings. Kyiv, Ukraine:
Ministry of Regional Development, Construction and Housing and Communal Services of Ukraine, (in Ukrainian).
Korshunov, O., Zuev, V. (2011). Vremya teplovoy inertsiii termicheskoye soprotivleniye sloistykh sten (Time of
thermal inertia and thermal resistance of multilayered walls). Energoresursosberezheniye i energoeffektivnost
(Energy saving and energy efficiency), 4(40), 23–26, (in Russian).
Saaty, T. L. (2009). (Prinyatiye resheniy pri zavisimostyakh i obratnіkh svyazyakh: Analiticheskiye seti: per. s
angl) (Decision-making with dependencies and inverse connections: Analytical networks: Translated from English).
Moscow: LIBROCOM Book House (in Russian).
Biks, Y., Ratushnyak, G., & Ratushnyak, O. (2019). Energy performance assessment of envelopes from
organic materials. Architecture Civil Engineering Environment. No. 3: 55–67. doi: 0.21307/ACEE-2019-036.
Tabunshchikov, Yu. A. Brodach, M. M. (2002). Matematicheskoe modelirovanie i optimizaciya teplovoj effektivnosti
zdanij (Mathematical modelling and optimization of thermal efficiency of buildings). Moscow: AVOK-PRESS (in
Russian).
ISO 13786:2017. Thermal performance of building components ‒ Dynamic thermal characteristics ‒ Calculation
methods. Retrieved from: https://www.iso.org/ru/standard/65711.html
A brief guide and free tool for the calculation of the thermal mass of building components. Retrieved from:
https://www.htflux.com/en/free-calculation-tool-for-thermal-mass-of-building-components-iso-13786/
Clarke, J. A., Yaneske, P. P., Pinney, A. A. The Harmonisation of Thermal Properties of Building Materials.
Retrieved from http://www.esru.strath.ac.uk/Documents/89/thermop_rep.pdf
Fareniuk, H. H. (2009). Osnovy zabezpechennia enerhoefektyvnosti budynkiv ta teplovoi nadiinosti
ohorodzhuvalnykh konstruktsii(Fundamentals of energy efficiency of buildings and thermal reliability of enclosing
structures). Kyiv: Hama-Prynt, 216. (in Ukrainian).
Saulles, T. D. (2012). Thermal mass explained.
Daniel, S. A. A., Pugazhenthi, R., Kumar, R., & Vijayananth, S. (2019). Multi objective prediction and
optimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and
Taguchi-grey relational analysis. Defence Technology, 15(4), 545–556. doi: 10.1016/j.dt.2019.01.001.
Sarpkaya, C., & Sabir, E. C. (2016). Optimization of the sizing process with grey relational analysis. Fibres
& Textiles in Eastern Europe, (1 (115)), 49–55. doi: 10.5604/12303666.1172087.
Lin, Y., & Liu, S. (2004, October). A historical introduction to grey systems theory. In 2004 IEEE International
Conference on Systems, Man and Cybernetics(IEEE Cat. No. 04CH37583) (Vol. 3, pp. 2403–2408). IEEE.
Biks, Y. et al. (2019). Patent of Ukraine 130276. Kyiv: State Patent Office of Ukraine.
Kulichenko, I. I. (2013). Ekonomichna efektyvnist vykorystannia mistsevykh ekolohichnykh materialiv v
malopoverkhovomu budivnytstvi dostupnoho zhytla (Economic efficiency of using local environmental materials in
low-rise construction of affordable housing). Stroytelstvo. Materyalovedenye. Mashynostroenye. Seryia: Innovatsyonnye
tekhnolohyy zhyznennoho tsykla obiectov zhylyshchno-hrazhdanskoho, promyshlennoho i transportnoho naznachenyia
(Construction. Material science. Mechanical engineering. Series: Innovative technologies of the life cycle of object), 69, 257–264, (in Ukrainian).
References (International): Wang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis
aid in sustainable energy decision-making. Renewable and sustainable energy reviews, 13(9), 2263–2278.
doi:10.1016/j.rser.2009.06.021.
Kheiri, F. (2018). A review on optimization methods applied in energy-efficient building geometry and
envelope design. Renewable and Sustainable Energy Reviews, 92, 897–920. doi: 10.1016/j.rser.2018.04.080
Shimray, B. A., Singh, K. M., & Mehta, R. K. (2017). A survey of multi-criteria decision making technique
used in renewable energy planning. International Journal of Computer, 4523, 124–140.
Liu, S., Yang, Y., & Forrest, J. (2017). Grey data analysis. Springer Singapore, Singapore. doi:10(1007), 978–981.
Wang, J. J., Jing, Y. Y., Zhang, C. F., Zhang, X. T., & Shi, G. H. (2008). Integrated evaluation of distributed
triple-generation systems using improved grey incidence approach. Energy, 33(9), 1427–1437. doi: 10.1016/j.energy.2008.04.008.
Hopfe, C. J., Augenbroe, G. L., & Hensen, J. L. (2013). Multi-criteria decision making under uncertainty in
building performance assessment. Building and environment, 69, 81–90. doi: 10.1016/j.buildenv.2013.07.019.
Stazi, F. (2017). Thermal Inertia in Energy Efficient Building Envelopes. Butterworth-Heinemann. doi: 10.1016/B978-0-12-813970-7.00001-7.
Bläsi, W. (2001). Bauphysik. Bibliothek des technischen Wissens. 3 Auflage. Haan: Verlag Europa Lehrmittel.
Ukrainian National Standard. DSTU B.V. 2.6-189: 2013. (2014). Methods of choosing insulation material for
insulation of buildings. Kyiv, Ukraine: Ministry of Regional Development, Construction and Housing and
Communal Services of Ukraine, (in Ukrainian).
Ukrainian National Standard. DSTU-N B. V. 2.6-190: 2013. (2014). An instruction on the estimated estimation of
heat resistance and heat recovery of fencing structures. Kyiv, Ukraine: Ministry of Regional Development,
Construction and Housing and Communal Services of Ukraine, (in Ukrainian).
Filonenko, O. I., Yurin, O. I. (2015). Budivelna a teplofizyka ohorodzhuvalnykh konstruktsii budivel: navch.
posibnyk (Construction and Thermal Physics of Building Enclosures: A manual). Poltava: Poltavskyi natsionalnyi
tekhnichnyi universytet im. Yuriia Kondratiuka (Poltava: Poltava National Technical University named after Yuri
Kondratyuk), (in Ukrainian).
Osobennosti maloetazhnogo energoeffektivnogo ekologicheskogo stroitelstva v raznykh klimaticheskikh
zonakh (Features of low-rise energy-efficient ecological construction in different climatic zones). Retrieved from
http://www.itp.nsc.ru/conferences/mzhz_2017/files/Section_02.pdf#page=16 (in Russian).
Ukrainian Building Code. DBN V. 2.6-31: 2016. (2017). Thermal insulation of buildings. Kyiv, Ukraine:
Ministry of Regional Development, Construction and Housing and Communal Services of Ukraine, (in Ukrainian).
Korshunov, O., Zuev, V. (2011). Vremya teplovoy inertsiii termicheskoye soprotivleniye sloistykh sten (Time of
thermal inertia and thermal resistance of multilayered walls). Energoresursosberezheniye i energoeffektivnost
(Energy saving and energy efficiency), 4(40), 23–26, (in Russian).
Saaty, T. L. (2009). (Prinyatiye resheniy pri zavisimostyakh i obratnikh svyazyakh: Analiticheskiye seti: per. s
angl) (Decision-making with dependencies and inverse connections: Analytical networks: Translated from English).
Moscow: LIBROCOM Book House (in Russian).
Biks, Y., Ratushnyak, G., & Ratushnyak, O. (2019). Energy performance assessment of envelopes from
organic materials. Architecture Civil Engineering Environment. No. 3: 55–67. doi: 0.21307/ACEE-2019-036.
Tabunshchikov, Yu. A. Brodach, M. M. (2002). Matematicheskoe modelirovanie i optimizaciya teplovoj effektivnosti
zdanij (Mathematical modelling and optimization of thermal efficiency of buildings). Moscow: AVOK-PRESS (in
Russian).
ISO 13786:2017. Thermal performance of building components ‒ Dynamic thermal characteristics ‒ Calculation
methods. Retrieved from: https://www.iso.org/ru/standard/65711.html
A brief guide and free tool for the calculation of the thermal mass of building components. Retrieved from:
https://www.htflux.com/en/free-calculation-tool-for-thermal-mass-of-building-components-iso-13786/
Clarke, J. A., Yaneske, P. P., Pinney, A. A. The Harmonisation of Thermal Properties of Building Materials.
Retrieved from http://www.esru.strath.ac.uk/Documents/89/thermop_rep.pdf
Fareniuk, H. H. (2009). Osnovy zabezpechennia enerhoefektyvnosti budynkiv ta teplovoi nadiinosti
ohorodzhuvalnykh konstruktsii(Fundamentals of energy efficiency of buildings and thermal reliability of enclosing
structures). Kyiv: Hama-Prynt, 216. (in Ukrainian).
Saulles, T. D. (2012). Thermal mass explained.
Daniel, S. A. A., Pugazhenthi, R., Kumar, R., & Vijayananth, S. (2019). Multi objective prediction and
optimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and
Taguchi-grey relational analysis. Defence Technology, 15(4), 545–556. doi: 10.1016/j.dt.2019.01.001.
Sarpkaya, C., & Sabir, E. C. (2016). Optimization of the sizing process with grey relational analysis. Fibres
& Textiles in Eastern Europe, (1 (115)), 49–55. doi: 10.5604/12303666.1172087.
Lin, Y., & Liu, S. (2004, October). A historical introduction to grey systems theory. In 2004 IEEE International
Conference on Systems, Man and Cybernetics(IEEE Cat. No. 04CH37583) (Vol. 3, pp. 2403–2408). IEEE.
Biks, Y. et al. (2019). Patent of Ukraine 130276. Kyiv: State Patent Office of Ukraine.
Kulichenko, I. I. (2013). Ekonomichna efektyvnist vykorystannia mistsevykh ekolohichnykh materialiv v
malopoverkhovomu budivnytstvi dostupnoho zhytla (Economic efficiency of using local environmental materials in
low-rise construction of affordable housing). Stroytelstvo. Materyalovedenye. Mashynostroenye. Seryia: Innovatsyonnye
tekhnolohyy zhyznennoho tsykla obiectov zhylyshchno-hrazhdanskoho, promyshlennoho i transportnoho naznachenyia
(Construction. Material science. Mechanical engineering. Series: Innovative technologies of the life cycle of object), 69, 257–264, (in Ukrainian).
Content type: Article
Appears in Collections:Theory and Building Practice. – 2020. – Vol. 2, No. 2

Files in This Item:
File Description SizeFormat 
2020v2n2_Biks_Y-Application_of_AHP_and_GRA_methods_48-62.pdf1.1 MBAdobe PDFView/Open
2020v2n2_Biks_Y-Application_of_AHP_and_GRA_methods_48-62__COVER.png478.37 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.