https://oldena.lpnu.ua/handle/ntb/56583
Title: | Elimination of Flow Rate Restriction for System of Storm Water Sewage with the Help of Drag-reducing Polymers |
Other Titles: | Усунення обмеження дощової каналізаційної мережі за витратою за допомогою гідродинамічно активних полімерів |
Authors: | Орел, В. І. Піцишин, Б. С. Ворон, Я. І. Orel, Vadym Pitsyshyn, Bohdan Voron, Yaryna |
Affiliation: | Національний університет “Львівська політехніка” Lviv Polytechnic National University |
Bibliographic description (Ukraine): | Orel V. Elimination of Flow Rate Restriction for System of Storm Water Sewage with the Help of Drag-reducing Polymers / Vadym Orel, Bohdan Pitsyshyn, Yaryna Voron // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 10–20. |
Bibliographic description (International): | Orel V. Elimination of Flow Rate Restriction for System of Storm Water Sewage with the Help of Drag-reducing Polymers / Vadym Orel, Bohdan Pitsyshyn, Yaryna Voron // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 10–20. |
Is part of: | Theory and Building Practice, 2 (2), 2020 |
Issue: | 2 |
Issue Date: | 23-Mar-2020 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
DOI: | doi.org/10.23939/jtbp2020.02.010 |
Keywords: | обмеження за витратою затоплення територій гідродинамічно активні полімери регулювальний резервуар flow-rate restriction flooding of territories drag-reducing polymers detention tank |
Number of pages: | 11 |
Page range: | 10-20 |
Start page: | 10 |
End page: | 20 |
Abstract: | Розглянуто можливі причини затоплення територій дощовими водами за надзвичайних ситуацій
та методи управління дощовим стоком. Обґрунтовано уникнення затоплення місцевості вживанням заходів,
які усувають обмеження дощової каналізаційної мережі за витратою. Використання
гідродинамічно активних полімерів (ГДАП), які зменшують гідравлічне тертя в трубопроводах,
запропоновано розглядати як метод управління дощовим стоком зменшенням накопичення зливових
вод на поверхні водозбору. ГДАП збільшують об’ємну витрату трубопроводів і віртуально збільшують
їхню довжину та діаметр. Стаття присвячена збільшенню пропускної здатності дощових каналізаційних
мереж за допомогою регулювального резервуара для зливової води та ГДАП. Запропоновано
використовувати ГДАП у вигляді водного розчину та вводити безпосередньо в дощову каналізаційну
мережу крізь дощоприймач чи люк колодязя. Застосовуючи шестеренний насос як дозатор, введення
проводять із цистерни, в якій пристрій для приготування розчину з вихідної сировини ГДАП має
ексцентрично розташований гладкий робочий орган. Вказані пристрої не призводять до деструкції
молекул ГДАП, що передчасно не зменшує ефекту від використання останніх. Управління дощовим
стоком показано на прикладі квадратного в плані басейну стоку при точковій схемі водовідведення з
використанням регулювального резервуара проточного типу, встановленого на початку дощової
каналізаційної мережі діаметром 300 мм та довжиною 1922,5 м, та використання водного розчину
поліакриламіду концентрацією 500 ррм (0,0005 кг/л). Математичне моделювання роботи системи
дощової каналізації показало, що збирати дощовий стік за зазначених вище умов можна з басейну
більшою площею, ніж без використання ГДАП за рахунок збільшення витрати поверхневого стоку та
витрати відтоку з регулювального резервуара. The flow-rate restriction for storm sewage network is substantiated. Possible causes of flooding of territories by storm water in the case of emergency and methods of storm waters management are considered. The article is devoted to an increase in throughput of storm sewage networks with the help of in-line storm water detention tank installed at the beginning of storm sewage network and drag-reducing polymers (DRP). It is proposed to introduce DRPs in the form of solution directly into the sewage network through a storm-water inlet or through a sewer manhole. The introduction is conducted from a tank (cistern) in which there is a device for preparing an aqueous solution from the raw materials of DRP. For a square (in horizontal plane) catchment, in the case of point-type water drainage, the numerical simulation of the work of a system of storm water sewage with the help of DRP has been carried out. |
URI: | https://ena.lpnu.ua/handle/ntb/56583 |
Copyright owner: | © Національний університет “Львівська політехніка”, 2020 © Orel V., Pitsyshyn B., Voron Ya., 2020 |
URL for reference material: | http://polypipe.info/technologies-materials/1285-beztranwejne-vidnovlennyatryboprovodiv https://doi.org/10.1115/1.3425401 https://doi.org/10.1051/matecconf/201711101001 https://doi.org/10.1051/e3sconf/201911600049 https://doi.org/10.1134/S1070427215010176 https://doi.org/10.23939/ep2020.01.001 https://doi.org/10.36930/40290921 |
References (Ukraine): | Almuhametova, D. A. (2016). Tehnologicheskie aspekty primenenija protivoturbulentnyh prisadok v truboprovodah uglevodorodnogo syr'ja. Truboprovodnyj transport – 2016: materialy XI Mezhdunarodnoj uchebnonauchno-prakticheskoj konferencii. Ufa, 2016, 185-186 (in Russian). Belousov, Yu. P. (1986). Protivoturbulentnye prisadki dlja uglevodorodnyh zhidkostej. Nauka, Novosibirsk (in Russian). Butin, Volodymyr (2015). Beztransheine vidnovlennia truboprovodiv velykykh diametriv. Polimerni truby – Ukraina 1, 33–35 (in Ukrainian). URL: http://polypipe.info/technologies-materials/1285-beztranwejne-vidnovlennyatryboprovodiv. Hoyt, J. W. (1972). The Effect of Additive on Fluid Friction. Trans. ASME. J. Basic Eng. 94(2), 258–285. https://doi.org/10.1115/1.3425401 Hrudka, J., Csicsaiova, R., Marko, I., Stanko, S., & Skultetyova, I. (2020).The impact of intense rainfall on a storm sewage system of the east part of Trnava city. IOP Conference Series: Earth and Environmental Science. 444(1), 012022. doi:10.1088/1755-1315/444/1/012022. Ignatchik, S. Y, Kuznetsova, N. V., Fes’kova, A. Y., & Senyukovich, M. A. (2019). Results of studying forced-flow modes of sewage collectors. Water and Ecology 24(4), 88–95. DOI: 10.23968/2305-3488.2019.24.4.88-95. Jelperin, I. T., Levental, L. I., Melcer, V. L., Sirotenko, V. A., & Malkenzon, G. A. (1976). Povyshenie propusknoj sposobnosti tehnicheskih truboprovodov pri gidrotransporte putem aktivacii nesushhej zhidkosti. Vescі AN BSSR, ser. fіz.-jenerg. navuk 3, 90–94 (in Russian). Kalicun, V. I. (1987). Vodootvodjashhie seti i sooruzhenija. Strojizdat, Moskva (in Russian). Kashlach, E. S., Berezina, E. M., Smirnova, A. S., Berezina, I. A., Manzhai, V. N., & Fufaeva, M. S. (2019). Comparative assessment of drag reduction efficiencies of polymer solutions and surfactants at low temperatures / IOP Conference Series: Materials Science and Engineering. 696 012004. doi:10.1088/1757-899X/696/1/012004. Ling, Fiona W.M. & Abdulbari, Hayder A. (2017). Drag reduction by natural polymeric additives in PMDS microchannel: Effect of types of additives / MATEC Web of Conferences Vol.111, 01001 (2017) FluidsChE 2017. – 5 pp. https://doi.org/10.1051/matecconf/201711101001. Malmur Robert (2019). Methods of drainage and transfer of rainwater. 2019. E3S Web of Conferences. 116, 00049 (International Conference on Advances in Energy Systems and Environmental Engineering, ASEE 2019; Wroclaw; Poland; 9 June 2019 through 12 June 2019). https://doi.org/10.1051/e3sconf/201911600049. Manzhay, V. N., Nosikova, Y. R. & Abdusalyamov, A. V. (2015). Degradation of polymer solutions in a turbulent flow in a cylindrical channel. Russian journal of applied chemistry 88(1), 118–123. https://doi.org/10.1134/S1070427215010176. Mysak, Ihor, Zhuk, Volodymyr, & Petrushka, Kateryna (2020). Comparison of the methods of surface runoff modelling from the urbanized subcatchments for estimation of peak loads on the environment. Environmental problems 5(1), 1-6. https://doi.org/10.23939/ep2020.01.001. Orel, V. I. (2017a). Vykorystannia hidrodynamichno aktyvnykh polimeriv na merezhakh doshchovoi kanalizatsii pry opadakh velykoi intensyvnosti. Applied Scientific and Technical Research : Proceedings of International Scientific and Practical Conference, April 5–7, 2017, Ivano-Frankivsk / Academy of Technical Sciences of Ukraine. Ivano-Frankivsk : Symfoniia forte, 143 (in Ukrainian). Orel, V. I. (2017b). Rehuliuvannia systemy nasos–truboprovid zminoiu shvydkosti obertannia shesterennoho nasosa ta perepompovuvanniam hidrodynamichno aktyvnykh polimeriv. Problemy vodopostachannia, vodovidvedennia ta hidravliky: Naukovo-tekhnichnyi zbirnyk 28, 264–271 (in Ukrainian). Orel, V. I., Pitsyshyn, B. S., & Popadiuk, I. Yu. (2019). Vykorystannia zmishuvacha novoi konstruktsii dlia pryhotuvannia vodnykh rozchyniv poliakrylamidu v pototsi Teilora-Kuetta. Naukovyi visnyk NLTU Ukrainy, 29(9), 121-125 (in Ukrainian). https://doi.org/10.36930/40290921. Orel, V., Pitsyshyn, B., & Popadiuk, I. (2020). Preparation of aqueous solutions of polyacrylamide in Taylor Couette flow. Water Supply and Wastewater Disposal. Designing, Construction, Operation and Monitoring. In H. Sobczuk & B. Kowalska (Eds.), Part this book (pp. 198–210). Publishing house: Wydawnictwo Politechniki Lubelskiej, Lublin. Osman, M., Takaijudin, H., Yusof, K. W., Goh, H. W., & Ghani, A. Ab (2020). The use of treatment train for stormwater quality control in urban areas in Malaysia: A short review. IOP Conference Series: Earth and Environmental Science 476 (2020) 012090. doi:10.1088/1755-1315/476/1/012090. Rybalova, O. V., Bryhada, O. V., Matsak, A. O., & Zhuk, V. M. (2018). Vyznachennia vplyvu pryrodnykh chynnykiv na formuvannia poverkhnevoho stoku. Proceedings of the VII International Scientific and Practical Conference International Trends in Science and Technology 2(30), 2018, Warsaw, Poland, 10–17 (in Ukrainian). Semenov, B. N. (1991). Bezympul'snyj vvod polimernyh dobavok v techenie dlja snizhenija trenija. Sibirskij fiziko-tehnicheskij zhurnal 4, 90–98 (in Russian). Sergaev, A. A. (2018). Optimizacija vybora tehnicheskih reshenij dlja obespechenija trebuemoj proizvoditel'nosti nefte- i nefteproduktoprovodov. Truboprovodnyj transport uglevodorodov : materialy II Vseros. nauch.-prakt. konf. (Omsk, 30 okt. 2018 g.). Omsk, 2018, 32–41 (in Russian). Simonenko, A. P., Aslanov, P. V., & Dmitrenko, N. A. (2015). Primenenie jeffekta Tomsa dlja umen'shenija gidravlicheskih poter' v kanalizacionnyh kollektorah i sistemah vodootvedenija pri chrezvychajnyh situacijah. Jekologija i zashhita okruzhajushhej sredy: Sb. tez. dokl. II Mezhdunar. nauch.-prakt. konf., Minsk, 25 marta 2015 g. Minsk, 2015, 137–140 (in Russian). Sulejmanova, Ju. V. (2007). Polimerizacija 1-oktena na katalizatorah Ciglera-Natta, razrabotka antiturbulentnyh prisadok i udaroprochnyh kompozicij na osnove poli-1-oktena : avtoref. dis. … kand. him. nauk. Barnaul, 2007, 19 (in Russian). Tkachuk, O. A., Salchuk, V. L., & Oleksiiuk, O. V. (2014). Otsinka prychyn zatoplennia kanalizovanykh miskykh terytorii doshchovymy vodamy. Visnyk NUVHP. Tekhnichni nauky : zbirnyk naukovykh prats 1(65), 344–350 (in Ukrainian). Tkachuk, S. H. & Zhuk, V. M. (2012). Rehuliuvannia doshchovoho stoku v systemakh vodovidvedennia: monohrafiia. Vydavnytstvo Lvivskoi politekhniky, Lviv (in Ukrainian). Zhuk, V. M., Vovk, L. I., Popadiuk, I. Yu., & Matlai, I. I. (2015). Zastosuvannia ohliadovykh kolodiaziv dlia rehuliuvannia doshchovoho stoku z malykh urbanizovanykh terytorii. Problemy vodopostachannia, vodovidvedennia ta hidravliky: Naukovo-tekhnichnyi zbirnyk 25, 92–99 (in Ukrainian). Zhuk, Volodymyr & Mysak, Ihor (2020). Stormwater hydrographs from the rectangular impervious subcatchments modelled by the modified three-dimensional sector method. Theoretical and scientific foundations of engineering: collective monograph. Part this book (pp. 101–105). Primedia eLaunch, Boston (in Ukrainian). DOI : 10.46299/isg.2020.MONO.TECH.II. Zhuk, Volodymyr & Orel, Vadym (1995). Problemy vykorystannia hidrodynamichno aktyvnykh dobavok dlia zbilshennia propusknoi zdatnosti kanalizatsiinykh kolektoriv. Problemy Budownictwa i Inżynierii Środowiska: IV Naukowa Konferencja Rzeszowsko-Lwowska. Rzeszów 15–16 wrzesień 1995. Cz. II. Inżynieria Środowiska, 241–246 (in Ukrainian). |
References (International): | Almuhametova, D. A. (2016). Tehnologicheskie aspekty primenenija protivoturbulentnyh prisadok v truboprovodah uglevodorodnogo syr'ja. Truboprovodnyj transport – 2016: materialy XI Mezhdunarodnoj uchebnonauchno-prakticheskoj konferencii. Ufa, 2016, 185-186 (in Russian). Belousov, Yu. P. (1986). Protivoturbulentnye prisadki dlja uglevodorodnyh zhidkostej. Nauka, Novosibirsk (in Russian). Butin, Volodymyr (2015). Beztransheine vidnovlennia truboprovodiv velykykh diametriv. Polimerni truby – Ukraina 1, 33–35 (in Ukrainian). URL: http://polypipe.info/technologies-materials/1285-beztranwejne-vidnovlennyatryboprovodiv. Hoyt, J. W. (1972). The Effect of Additive on Fluid Friction. Trans. ASME. J. Basic Eng. 94(2), 258–285. https://doi.org/10.1115/1.3425401 Hrudka, J., Csicsaiova, R., Marko, I., Stanko, S., & Skultetyova, I. (2020).The impact of intense rainfall on a storm sewage system of the east part of Trnava city. IOP Conference Series: Earth and Environmental Science. 444(1), 012022. doi:10.1088/1755-1315/444/1/012022. Ignatchik, S. Y, Kuznetsova, N. V., Fes’kova, A. Y., & Senyukovich, M. A. (2019). Results of studying forced-flow modes of sewage collectors. Water and Ecology 24(4), 88–95. DOI: 10.23968/2305-3488.2019.24.4.88-95. Jelperin, I. T., Levental, L. I., Melcer, V. L., Sirotenko, V. A., & Malkenzon, G. A. (1976). Povyshenie propusknoj sposobnosti tehnicheskih truboprovodov pri gidrotransporte putem aktivacii nesushhej zhidkosti. Vesci AN BSSR, ser. fiz.-jenerg. navuk 3, 90–94 (in Russian). Kalicun, V. I. (1987). Vodootvodjashhie seti i sooruzhenija. Strojizdat, Moskva (in Russian). Kashlach, E. S., Berezina, E. M., Smirnova, A. S., Berezina, I. A., Manzhai, V. N., & Fufaeva, M. S. (2019). Comparative assessment of drag reduction efficiencies of polymer solutions and surfactants at low temperatures / IOP Conference Series: Materials Science and Engineering. 696 012004. doi:10.1088/1757-899X/696/1/012004. Ling, Fiona W.M. & Abdulbari, Hayder A. (2017). Drag reduction by natural polymeric additives in PMDS microchannel: Effect of types of additives, MATEC Web of Conferences Vol.111, 01001 (2017) FluidsChE 2017, 5 pp. https://doi.org/10.1051/matecconf/201711101001. Malmur Robert (2019). Methods of drainage and transfer of rainwater. 2019. E3S Web of Conferences. 116, 00049 (International Conference on Advances in Energy Systems and Environmental Engineering, ASEE 2019; Wroclaw; Poland; 9 June 2019 through 12 June 2019). https://doi.org/10.1051/e3sconf/201911600049. Manzhay, V. N., Nosikova, Y. R. & Abdusalyamov, A. V. (2015). Degradation of polymer solutions in a turbulent flow in a cylindrical channel. Russian journal of applied chemistry 88(1), 118–123. https://doi.org/10.1134/S1070427215010176. Mysak, Ihor, Zhuk, Volodymyr, & Petrushka, Kateryna (2020). Comparison of the methods of surface runoff modelling from the urbanized subcatchments for estimation of peak loads on the environment. Environmental problems 5(1), 1-6. https://doi.org/10.23939/ep2020.01.001. Orel, V. I. (2017a). Vykorystannia hidrodynamichno aktyvnykh polimeriv na merezhakh doshchovoi kanalizatsii pry opadakh velykoi intensyvnosti. Applied Scientific and Technical Research : Proceedings of International Scientific and Practical Conference, April 5–7, 2017, Ivano-Frankivsk, Academy of Technical Sciences of Ukraine. Ivano-Frankivsk : Symfoniia forte, 143 (in Ukrainian). Orel, V. I. (2017b). Rehuliuvannia systemy nasos–truboprovid zminoiu shvydkosti obertannia shesterennoho nasosa ta perepompovuvanniam hidrodynamichno aktyvnykh polimeriv. Problemy vodopostachannia, vodovidvedennia ta hidravliky: Naukovo-tekhnichnyi zbirnyk 28, 264–271 (in Ukrainian). Orel, V. I., Pitsyshyn, B. S., & Popadiuk, I. Yu. (2019). Vykorystannia zmishuvacha novoi konstruktsii dlia pryhotuvannia vodnykh rozchyniv poliakrylamidu v pototsi Teilora-Kuetta. Naukovyi visnyk NLTU Ukrainy, 29(9), 121-125 (in Ukrainian). https://doi.org/10.36930/40290921. Orel, V., Pitsyshyn, B., & Popadiuk, I. (2020). Preparation of aqueous solutions of polyacrylamide in Taylor Couette flow. Water Supply and Wastewater Disposal. Designing, Construction, Operation and Monitoring. In H. Sobczuk & B. Kowalska (Eds.), Part this book (pp. 198–210). Publishing house: Wydawnictwo Politechniki Lubelskiej, Lublin. Osman, M., Takaijudin, H., Yusof, K. W., Goh, H. W., & Ghani, A. Ab (2020). The use of treatment train for stormwater quality control in urban areas in Malaysia: A short review. IOP Conference Series: Earth and Environmental Science 476 (2020) 012090. doi:10.1088/1755-1315/476/1/012090. Rybalova, O. V., Bryhada, O. V., Matsak, A. O., & Zhuk, V. M. (2018). Vyznachennia vplyvu pryrodnykh chynnykiv na formuvannia poverkhnevoho stoku. Proceedings of the VII International Scientific and Practical Conference International Trends in Science and Technology 2(30), 2018, Warsaw, Poland, 10–17 (in Ukrainian). Semenov, B. N. (1991). Bezympul'snyj vvod polimernyh dobavok v techenie dlja snizhenija trenija. Sibirskij fiziko-tehnicheskij zhurnal 4, 90–98 (in Russian). Sergaev, A. A. (2018). Optimizacija vybora tehnicheskih reshenij dlja obespechenija trebuemoj proizvoditel'nosti nefte- i nefteproduktoprovodov. Truboprovodnyj transport uglevodorodov : materialy II Vseros. nauch.-prakt. konf. (Omsk, 30 okt. 2018 g.). Omsk, 2018, 32–41 (in Russian). Simonenko, A. P., Aslanov, P. V., & Dmitrenko, N. A. (2015). Primenenie jeffekta Tomsa dlja umen'shenija gidravlicheskih poter' v kanalizacionnyh kollektorah i sistemah vodootvedenija pri chrezvychajnyh situacijah. Jekologija i zashhita okruzhajushhej sredy: Sb. tez. dokl. II Mezhdunar. nauch.-prakt. konf., Minsk, 25 marta 2015 g. Minsk, 2015, 137–140 (in Russian). Sulejmanova, Ju. V. (2007). Polimerizacija 1-oktena na katalizatorah Ciglera-Natta, razrabotka antiturbulentnyh prisadok i udaroprochnyh kompozicij na osnove poli-1-oktena : avtoref. dis. … kand. him. nauk. Barnaul, 2007, 19 (in Russian). Tkachuk, O. A., Salchuk, V. L., & Oleksiiuk, O. V. (2014). Otsinka prychyn zatoplennia kanalizovanykh miskykh terytorii doshchovymy vodamy. Visnyk NUVHP. Tekhnichni nauky : zbirnyk naukovykh prats 1(65), 344–350 (in Ukrainian). Tkachuk, S. H. & Zhuk, V. M. (2012). Rehuliuvannia doshchovoho stoku v systemakh vodovidvedennia: monohrafiia. Vydavnytstvo Lvivskoi politekhniky, Lviv (in Ukrainian). Zhuk, V. M., Vovk, L. I., Popadiuk, I. Yu., & Matlai, I. I. (2015). Zastosuvannia ohliadovykh kolodiaziv dlia rehuliuvannia doshchovoho stoku z malykh urbanizovanykh terytorii. Problemy vodopostachannia, vodovidvedennia ta hidravliky: Naukovo-tekhnichnyi zbirnyk 25, 92–99 (in Ukrainian). Zhuk, Volodymyr & Mysak, Ihor (2020). Stormwater hydrographs from the rectangular impervious subcatchments modelled by the modified three-dimensional sector method. Theoretical and scientific foundations of engineering: collective monograph. Part this book (pp. 101–105). Primedia eLaunch, Boston (in Ukrainian). DOI : 10.46299/isg.2020.MONO.TECH.II. Zhuk, Volodymyr & Orel, Vadym (1995). Problemy vykorystannia hidrodynamichno aktyvnykh dobavok dlia zbilshennia propusknoi zdatnosti kanalizatsiinykh kolektoriv. Problemy Budownictwa i Inżynierii Środowiska: IV Naukowa Konferencja Rzeszowsko-Lwowska. Rzeszów 15–16 wrzesień 1995. Cz. II. Inżynieria Środowiska, 241–246 (in Ukrainian). |
Content type: | Article |
Appears in Collections: | Theory and Building Practice. – 2020. – Vol. 2, No. 2 |
File | Description | Size | Format | |
---|---|---|---|---|
2020v2n2_Orel_V-Elimination_of_Flow_Rate_Restriction_10-20.pdf | 652.38 kB | Adobe PDF | View/Open | |
2020v2n2_Orel_V-Elimination_of_Flow_Rate_Restriction_10-20__COVER.png | 375.28 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.