DC Field | Value | Language |
dc.contributor.author | Босак, М. П. | |
dc.contributor.author | Гвоздецький, О. Г. | |
dc.contributor.author | Піцишин, Б. С. | |
dc.contributor.author | Вдовичук, С. М. | |
dc.contributor.author | Bosak, Mykola | |
dc.contributor.author | Hvozdetskyi, Oleksandr | |
dc.contributor.author | Pitsyshyn, Bohdan | |
dc.contributor.author | Vdovychuk, Serhii | |
dc.date.accessioned | 2021-12-21T13:15:55Z | - |
dc.date.available | 2021-12-21T13:15:55Z | - |
dc.date.created | 2020-03-23 | |
dc.date.issued | 2020-03-23 | |
dc.identifier.citation | The Research of Circulation Water Supply System of Power unit of Thermal Power Plant with Heller Cooling Tower / Mykola Bosak, Oleksandr Hvozdetskyi, Bohdan Pitsyshyn, Serhii Vdovychuk // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 1–9. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/56574 | - |
dc.description.abstract | Виконано аналітичні гідравлічні дослідження системи охолодження циркуляційної води (ОЦВ)
енергоблоку ТЕС з градирнею Геллера. Аналітичні дослідження виконані на базі експериментальних
даних, отриманих у процесі пускових випробувань системи ОЦВ енергоблоку “Раздан-5” потужністю
300 МВт. Дослідження системи ОЦВ проведені при електричній потужності енергоблоку 200–299 МВт, з
тепловим навантаженням 320–396 Гкал/год. Основна мета роботи – з’ясувати гідравлічний режим
циркуляційної системи охолодження для можливості збільшення подачі води. Величина подачі
охолоджувальної води та її температура впливають на
вакуум у конденсаторі турбіни. В кінцевому результаті це впливає на потужність турбогенератора
ТЕС Максимальна фактична подача води циркуляційною насосною станцією становила 32000 м3
/год, що нижче проєктної. Циркуляційними насосами (ЦН) вода в суміші з конденсатом подається в градирню, звідки вона вертається через
гідротурбіну на розприскування форсунками в конденсаторі пари турбіни. Спроба збільшити подачу води в
конденсатор збільшенням отворів форсунок не дала бажаних результатів. Величина подачі води в ЦН
залежить від втрати напору в системі ОЦВ. Зі складових системи вони найвищі в гідротурбінах, які є
в складі циркуляційної насосної станції. Тому регулюючи навантаження гідротурбіни, зі зменшенням
втрат напору води, можна збільшити подачу води циркуляційними насосами в конденсатор. Для
розрахунків зміненої гідравлічної характеристики системи ОЦВ використано експериментальні дані
та розроблені теоретичні залежності. В результаті зменшення втрат напору на ділянці гідротурбіни з
1,04 до 0,15 кгс/см2 диктуючою точкою для напору ЦН буде конденсатор пари турбіни. Слід зауважити, що в такому режимі роботи,
у верхніх частинах охолоджувальних секторів градирні можливий
вакуум. Градирня ТЕС розрахована на обслуговування двох енергоблоків. В умовах теплового навантаження
від одного енергоблоку температура охолодженої води, конденсату була нижчою за проєктні
значення. Ввімкнення в роботу секторів пікових охолоджувачів градирні дає зниження на 2–4 °С
температури охолодженої води лише з системою зрошення. | |
dc.description.abstract | Analytical hydraulic researches of the circulating water cooling system of the power unit of a
thermal power plant with Heller cooling tower have been performed. Analytical studies were performed
on the basis of experimental data obtained during the start-up tests of the circulating water cooling
system of the “Hrazdan-5” power unit with a capacity of 300 MW. Studies of the circulating water
cooling system were carried out at an electric power of the power unit of 200–299 MW, with a thermal
load of 320–396 Gcal/hr. By circulating pumps (CP), water mixed with condensate is fed to the cooling
tower, from where it is returned through the turbine for spraying by nozzles in the turbine steam
condenser. An attempt to increase the water supply to the condenser by increasing the size of the nozzles
did not give the expected results. The amount of the water supply to the circulating pumping station
depends on the pressure loss in the circulating water cooling system. The highest pressure losses are in
hydro turbines (HT), which are part of the circulating pumping station. Therefore, by adjusting the load
of the hydro turbine, with a decrease in water pressure losses, you can increase the water supply by
circulating pumps to the condenser. Experimental data and theoretical dependences were used to
calculate the changed hydraulic characteristics of the circulating water cooling system. As a result of
reducing the pressure losses in the section of the hydro turbine from 1.04 to 0.15 kgf/cm2, the dictating
point for the pressure of circulating pumping station will be the turbine steam condenser. The thermal
power plant cooling tower is designed to service two power units. Activation of the peak cooler sectors of the
cooling tower gives a reduction of the cooled water temperature by 2–4 °C only with the spraying system. | |
dc.format.extent | 1-9 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 2 (2), 2020 | |
dc.subject | система охолодження циркуляційної води | |
dc.subject | втрати напору в елементах системи | |
dc.subject | подача і напір циркуляційних насосів | |
dc.subject | градирня Геллера | |
dc.subject | circulating water cooling system | |
dc.subject | water pressure losses | |
dc.subject | flow rate and head pressure of circulating pumps | |
dc.subject | Heller cooling tower | |
dc.title | The Research of Circulation Water Supply System of Power unit of Thermal Power Plant with Heller Cooling Tower | |
dc.title.alternative | Дослідження системи циркуляційного водопостачання енергоблоку теплової електростанції з градирнями Геллера | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Bosak M., Hvozdetskyi O., Pitsyshyn B., Vdovychuk S., 2020 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | ПАТ ЛьвівОРГРЕС | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Private Company “LVIVORGRES” | |
dc.format.pages | 9 | |
dc.identifier.citationen | The Research of Circulation Water Supply System of Power unit of Thermal Power Plant with Heller Cooling Tower / Mykola Bosak, Oleksandr Hvozdetskyi, Bohdan Pitsyshyn, Serhii Vdovychuk // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 1–9. | |
dc.identifier.doi | doi.org/10.23939/jtbp2020.02.001 | |
dc.relation.references | M. Deziani, .Kh. Rahmani, S. J. Mirrezaei Roudaki & M. Kordloo, M. (2017) Feasibility study for reduce | |
dc.relation.references | water evaporative loss in a power plant cooling tower by using air to Air heat exchanger with auxiliary Fan. | |
dc.relation.references | Desalination Volume 40616, 119–124. | |
dc.relation.references | Ali Reza Seifi, Omid AliAkbari, Abdullah A.A.A.Alrashed, FazelAfshary, Gholamreza Ahmadi, Sheikh | |
dc.relation.references | Shabani, Reza Seifi, Marjan Goodarzi, Farzad Pourfattah (2018) Effects of external wind breakers of Heller dry | |
dc.relation.references | cooling system in power plants. Applied Thermal Engineering. Volume 129, Pages 1124–1134. | |
dc.relation.references | Reza Alizadeh Kheneslu, Ali Jahangiri & Mohammad Ameri (2020) Interaction effects of natural draft dry | |
dc.relation.references | cooling tower (NDDCT) performance and 4E (energy, exergy, economic and environmental) analysis of steam | |
dc.relation.references | power plant under different climatic conditions. Sustainable Energy Technologies and AssessmentsVolume 37, 2020Article 100599. | |
dc.relation.references | Guangjun Yang, Li Ding, Tongqing Guo, Xiaoxiao Li Wenxin Tian, Zhen Xu, Zhigang Wang, Furong Sun, | |
dc.relation.references | JunjieMin, Jingxin Xu, Sheng Wang, Zhaobing Guo. (2020) Study of flue gas emission and improvement measure | |
dc.relation.references | in a natural draft dry-cooling tower with flue gas injection under unfavorable working conditions. Atmospheric | |
dc.relation.references | Pollution Research. Volume 11, Issue 5, Pages 963–972. | |
dc.relation.references | Peixin Dong, Xiaoxiao Li, Kamel Hooman, Yubiao Sun, & Hal Gurgenci. (2019) The crosswind effects on | |
dc.relation.references | the start-up process of natural draft dry cooling towers in dispatchable power plants. International Journal of Heat | |
dc.relation.references | and Mass Transfer Volume 135, Pages 950–961. | |
dc.relation.references | Wenjing Ge, Yuanbin Zhao, Shiwei Song, Wendong Li, Shasha Gao, Tie Feng Chen. (2020) Thermal | |
dc.relation.references | characteristics of dry cooling tower reconstructed from obsolete natural draft wet coolingtower and the relevant | |
dc.relation.references | thermal system coupling optimization. Applied Thermal Engineering. Volume 174, 115202. | |
dc.relation.references | Z. Nourani, A. Naserbegi, Sh. Tayyebi & M. Aghaie. (2019) Thermodynamic evaluation of hybrid cooling | |
dc.relation.references | towers based on ambient temperature. Thermal Science and Engineering ProgressVolume 14, Article 100406. | |
dc.relation.references | A. Jahangiri, M. M. Yahyaabadi, & A. Sharif. (2019) Exergy and economic analysis of using the flue gas | |
dc.relation.references | injection system of a combined cycle power plant into the Heller Tower to improve the power plant performance. | |
dc.relation.references | Journal of Cleaner Production, Volume 2331, Pages 695–710. | |
dc.relation.references | Peixin Dong, Antonio S. Kaiser, Zhiqiang Guan, Xiaoxiao Li & Kamel Hooman. (2019) A novel method to | |
dc.relation.references | predict the transient start-up time for natural draft dry cooling towers in dispatchable power plants. International | |
dc.relation.references | Journal of Heat and Mass Transfer, Volume 145, Article 118794. | |
dc.relation.references | Xiaoxiao Li, Hal Gurgenci, Zhiqiang Guan, Xurong Wang & Sam Duniam. (2017) Measurements of | |
dc.relation.references | crosswind influence on a natural draft dry cooling tower for a solar thermal power plant. Applied EnergyVolume 20615 Pages 1169–1183. | |
dc.relation.references | Xuehong Chen, Fengzhong Sun, Youliang Chen, MingGao. (2019) Novel method for improving the cooling | |
dc.relation.references | performance of natural draft wet cooling towers. Applied Thermal Engineering. Volume 147, Pages 562–570. | |
dc.relation.references | Zhigang Dang, Ming Gao, Guoqing Long, Jian Zou, Suoying He, Fengzhong Sun. (2019) Crosswind | |
dc.relation.references | influence on cooling capacity in different zones for high level water collecting wet coolingtowers based on field test. | |
dc.relation.references | Journal of Wind Engineering and Industrial Aerodynamics. Volume 190, Pages 134–142. | |
dc.relation.references | Peixin Dong, Xiaoxiao Li, Zhiqiang Guan, & Hal Gurgenci. (2018) The transient start-up process of natural | |
dc.relation.references | draft dry cooling towers in dispatchable thermal power plants. International Journal of Heat and Mass Transfer | |
dc.relation.references | Volume 123 Pages 201–212. | |
dc.relation.references | Bosak M., Cherniuk V., Matlai I., Bihun I. (2019) Studying the mutual interaction of hydraulic characteristics of water distributing pipelines and their | |
dc.relation.references | spraying devices in the coolers at energy units. Eastern-European | |
dc.relation.references | Journal of Enterpricse Technologies. Volume 3/8 (99). Pages 23–29. | |
dc.relation.referencesen | M. Deziani, .Kh. Rahmani, S. J. Mirrezaei Roudaki & M. Kordloo, M. (2017) Feasibility study for reduce | |
dc.relation.referencesen | water evaporative loss in a power plant cooling tower by using air to Air heat exchanger with auxiliary Fan. | |
dc.relation.referencesen | Desalination Volume 40616, 119–124. | |
dc.relation.referencesen | Ali Reza Seifi, Omid AliAkbari, Abdullah A.A.A.Alrashed, FazelAfshary, Gholamreza Ahmadi, Sheikh | |
dc.relation.referencesen | Shabani, Reza Seifi, Marjan Goodarzi, Farzad Pourfattah (2018) Effects of external wind breakers of Heller dry | |
dc.relation.referencesen | cooling system in power plants. Applied Thermal Engineering. Volume 129, Pages 1124–1134. | |
dc.relation.referencesen | Reza Alizadeh Kheneslu, Ali Jahangiri & Mohammad Ameri (2020) Interaction effects of natural draft dry | |
dc.relation.referencesen | cooling tower (NDDCT) performance and 4E (energy, exergy, economic and environmental) analysis of steam | |
dc.relation.referencesen | power plant under different climatic conditions. Sustainable Energy Technologies and AssessmentsVolume 37, 2020Article 100599. | |
dc.relation.referencesen | Guangjun Yang, Li Ding, Tongqing Guo, Xiaoxiao Li Wenxin Tian, Zhen Xu, Zhigang Wang, Furong Sun, | |
dc.relation.referencesen | JunjieMin, Jingxin Xu, Sheng Wang, Zhaobing Guo. (2020) Study of flue gas emission and improvement measure | |
dc.relation.referencesen | in a natural draft dry-cooling tower with flue gas injection under unfavorable working conditions. Atmospheric | |
dc.relation.referencesen | Pollution Research. Volume 11, Issue 5, Pages 963–972. | |
dc.relation.referencesen | Peixin Dong, Xiaoxiao Li, Kamel Hooman, Yubiao Sun, & Hal Gurgenci. (2019) The crosswind effects on | |
dc.relation.referencesen | the start-up process of natural draft dry cooling towers in dispatchable power plants. International Journal of Heat | |
dc.relation.referencesen | and Mass Transfer Volume 135, Pages 950–961. | |
dc.relation.referencesen | Wenjing Ge, Yuanbin Zhao, Shiwei Song, Wendong Li, Shasha Gao, Tie Feng Chen. (2020) Thermal | |
dc.relation.referencesen | characteristics of dry cooling tower reconstructed from obsolete natural draft wet coolingtower and the relevant | |
dc.relation.referencesen | thermal system coupling optimization. Applied Thermal Engineering. Volume 174, 115202. | |
dc.relation.referencesen | Z. Nourani, A. Naserbegi, Sh. Tayyebi & M. Aghaie. (2019) Thermodynamic evaluation of hybrid cooling | |
dc.relation.referencesen | towers based on ambient temperature. Thermal Science and Engineering ProgressVolume 14, Article 100406. | |
dc.relation.referencesen | A. Jahangiri, M. M. Yahyaabadi, & A. Sharif. (2019) Exergy and economic analysis of using the flue gas | |
dc.relation.referencesen | injection system of a combined cycle power plant into the Heller Tower to improve the power plant performance. | |
dc.relation.referencesen | Journal of Cleaner Production, Volume 2331, Pages 695–710. | |
dc.relation.referencesen | Peixin Dong, Antonio S. Kaiser, Zhiqiang Guan, Xiaoxiao Li & Kamel Hooman. (2019) A novel method to | |
dc.relation.referencesen | predict the transient start-up time for natural draft dry cooling towers in dispatchable power plants. International | |
dc.relation.referencesen | Journal of Heat and Mass Transfer, Volume 145, Article 118794. | |
dc.relation.referencesen | Xiaoxiao Li, Hal Gurgenci, Zhiqiang Guan, Xurong Wang & Sam Duniam. (2017) Measurements of | |
dc.relation.referencesen | crosswind influence on a natural draft dry cooling tower for a solar thermal power plant. Applied EnergyVolume 20615 Pages 1169–1183. | |
dc.relation.referencesen | Xuehong Chen, Fengzhong Sun, Youliang Chen, MingGao. (2019) Novel method for improving the cooling | |
dc.relation.referencesen | performance of natural draft wet cooling towers. Applied Thermal Engineering. Volume 147, Pages 562–570. | |
dc.relation.referencesen | Zhigang Dang, Ming Gao, Guoqing Long, Jian Zou, Suoying He, Fengzhong Sun. (2019) Crosswind | |
dc.relation.referencesen | influence on cooling capacity in different zones for high level water collecting wet coolingtowers based on field test. | |
dc.relation.referencesen | Journal of Wind Engineering and Industrial Aerodynamics. Volume 190, Pages 134–142. | |
dc.relation.referencesen | Peixin Dong, Xiaoxiao Li, Zhiqiang Guan, & Hal Gurgenci. (2018) The transient start-up process of natural | |
dc.relation.referencesen | draft dry cooling towers in dispatchable thermal power plants. International Journal of Heat and Mass Transfer | |
dc.relation.referencesen | Volume 123 Pages 201–212. | |
dc.relation.referencesen | Bosak M., Cherniuk V., Matlai I., Bihun I. (2019) Studying the mutual interaction of hydraulic characteristics of water distributing pipelines and their | |
dc.relation.referencesen | spraying devices in the coolers at energy units. Eastern-European | |
dc.relation.referencesen | Journal of Enterpricse Technologies. Volume 3/8 (99). Pages 23–29. | |
dc.citation.issue | 2 | |
dc.citation.spage | 1 | |
dc.citation.epage | 9 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Theory and Building Practice. – 2020. – Vol. 2, No. 2
|