Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56574
Full metadata record
DC FieldValueLanguage
dc.contributor.authorБосак, М. П.
dc.contributor.authorГвоздецький, О. Г.
dc.contributor.authorПіцишин, Б. С.
dc.contributor.authorВдовичук, С. М.
dc.contributor.authorBosak, Mykola
dc.contributor.authorHvozdetskyi, Oleksandr
dc.contributor.authorPitsyshyn, Bohdan
dc.contributor.authorVdovychuk, Serhii
dc.date.accessioned2021-12-21T13:15:55Z-
dc.date.available2021-12-21T13:15:55Z-
dc.date.created2020-03-23
dc.date.issued2020-03-23
dc.identifier.citationThe Research of Circulation Water Supply System of Power unit of Thermal Power Plant with Heller Cooling Tower / Mykola Bosak, Oleksandr Hvozdetskyi, Bohdan Pitsyshyn, Serhii Vdovychuk // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 1–9.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56574-
dc.description.abstractВиконано аналітичні гідравлічні дослідження системи охолодження циркуляційної води (ОЦВ) енергоблоку ТЕС з градирнею Геллера. Аналітичні дослідження виконані на базі експериментальних даних, отриманих у процесі пускових випробувань системи ОЦВ енергоблоку “Раздан-5” потужністю 300 МВт. Дослідження системи ОЦВ проведені при електричній потужності енергоблоку 200–299 МВт, з тепловим навантаженням 320–396 Гкал/год. Основна мета роботи – з’ясувати гідравлічний режим циркуляційної системи охолодження для можливості збільшення подачі води. Величина подачі охолоджувальної води та її температура впливають на вакуум у конденсаторі турбіни. В кінцевому результаті це впливає на потужність турбогенератора ТЕС Максимальна фактична подача води циркуляційною насосною станцією становила 32000 м3 /год, що нижче проєктної. Циркуляційними насосами (ЦН) вода в суміші з конденсатом подається в градирню, звідки вона вертається через гідротурбіну на розприскування форсунками в конденсаторі пари турбіни. Спроба збільшити подачу води в конденсатор збільшенням отворів форсунок не дала бажаних результатів. Величина подачі води в ЦН залежить від втрати напору в системі ОЦВ. Зі складових системи вони найвищі в гідротурбінах, які є в складі циркуляційної насосної станції. Тому регулюючи навантаження гідротурбіни, зі зменшенням втрат напору води, можна збільшити подачу води циркуляційними насосами в конденсатор. Для розрахунків зміненої гідравлічної характеристики системи ОЦВ використано експериментальні дані та розроблені теоретичні залежності. В результаті зменшення втрат напору на ділянці гідротурбіни з 1,04 до 0,15 кгс/см2 диктуючою точкою для напору ЦН буде конденсатор пари турбіни. Слід зауважити, що в такому режимі роботи, у верхніх частинах охолоджувальних секторів градирні можливий вакуум. Градирня ТЕС розрахована на обслуговування двох енергоблоків. В умовах теплового навантаження від одного енергоблоку температура охолодженої води, конденсату була нижчою за проєктні значення. Ввімкнення в роботу секторів пікових охолоджувачів градирні дає зниження на 2–4 °С температури охолодженої води лише з системою зрошення.
dc.description.abstractAnalytical hydraulic researches of the circulating water cooling system of the power unit of a thermal power plant with Heller cooling tower have been performed. Analytical studies were performed on the basis of experimental data obtained during the start-up tests of the circulating water cooling system of the “Hrazdan-5” power unit with a capacity of 300 MW. Studies of the circulating water cooling system were carried out at an electric power of the power unit of 200–299 MW, with a thermal load of 320–396 Gcal/hr. By circulating pumps (CP), water mixed with condensate is fed to the cooling tower, from where it is returned through the turbine for spraying by nozzles in the turbine steam condenser. An attempt to increase the water supply to the condenser by increasing the size of the nozzles did not give the expected results. The amount of the water supply to the circulating pumping station depends on the pressure loss in the circulating water cooling system. The highest pressure losses are in hydro turbines (HT), which are part of the circulating pumping station. Therefore, by adjusting the load of the hydro turbine, with a decrease in water pressure losses, you can increase the water supply by circulating pumps to the condenser. Experimental data and theoretical dependences were used to calculate the changed hydraulic characteristics of the circulating water cooling system. As a result of reducing the pressure losses in the section of the hydro turbine from 1.04 to 0.15 kgf/cm2, the dictating point for the pressure of circulating pumping station will be the turbine steam condenser. The thermal power plant cooling tower is designed to service two power units. Activation of the peak cooler sectors of the cooling tower gives a reduction of the cooled water temperature by 2–4 °C only with the spraying system.
dc.format.extent1-9
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 2 (2), 2020
dc.subjectсистема охолодження циркуляційної води
dc.subjectвтрати напору в елементах системи
dc.subjectподача і напір циркуляційних насосів
dc.subjectградирня Геллера
dc.subjectcirculating water cooling system
dc.subjectwater pressure losses
dc.subjectflow rate and head pressure of circulating pumps
dc.subjectHeller cooling tower
dc.titleThe Research of Circulation Water Supply System of Power unit of Thermal Power Plant with Heller Cooling Tower
dc.title.alternativeДослідження системи циркуляційного водопостачання енергоблоку теплової електростанції з градирнями Геллера
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Bosak M., Hvozdetskyi O., Pitsyshyn B., Vdovychuk S., 2020
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationПАТ ЛьвівОРГРЕС
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationPrivate Company “LVIVORGRES”
dc.format.pages9
dc.identifier.citationenThe Research of Circulation Water Supply System of Power unit of Thermal Power Plant with Heller Cooling Tower / Mykola Bosak, Oleksandr Hvozdetskyi, Bohdan Pitsyshyn, Serhii Vdovychuk // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 1–9.
dc.identifier.doidoi.org/10.23939/jtbp2020.02.001
dc.relation.referencesM. Deziani, .Kh. Rahmani, S. J. Mirrezaei Roudaki & M. Kordloo, M. (2017) Feasibility study for reduce
dc.relation.referenceswater evaporative loss in a power plant cooling tower by using air to Air heat exchanger with auxiliary Fan.
dc.relation.referencesDesalination Volume 40616, 119–124.
dc.relation.referencesAli Reza Seifi, Omid AliAkbari, Abdullah A.A.A.Alrashed, FazelAfshary, Gholamreza Ahmadi, Sheikh
dc.relation.referencesShabani, Reza Seifi, Marjan Goodarzi, Farzad Pourfattah (2018) Effects of external wind breakers of Heller dry
dc.relation.referencescooling system in power plants. Applied Thermal Engineering. Volume 129, Pages 1124–1134.
dc.relation.referencesReza Alizadeh Kheneslu, Ali Jahangiri & Mohammad Ameri (2020) Interaction effects of natural draft dry
dc.relation.referencescooling tower (NDDCT) performance and 4E (energy, exergy, economic and environmental) analysis of steam
dc.relation.referencespower plant under different climatic conditions. Sustainable Energy Technologies and AssessmentsVolume 37, 2020Article 100599.
dc.relation.referencesGuangjun Yang, Li Ding, Tongqing Guo, Xiaoxiao Li Wenxin Tian, Zhen Xu, Zhigang Wang, Furong Sun,
dc.relation.referencesJunjieMin, Jingxin Xu, Sheng Wang, Zhaobing Guo. (2020) Study of flue gas emission and improvement measure
dc.relation.referencesin a natural draft dry-cooling tower with flue gas injection under unfavorable working conditions. Atmospheric
dc.relation.referencesPollution Research. Volume 11, Issue 5, Pages 963–972.
dc.relation.referencesPeixin Dong, Xiaoxiao Li, Kamel Hooman, Yubiao Sun, & Hal Gurgenci. (2019) The crosswind effects on
dc.relation.referencesthe start-up process of natural draft dry cooling towers in dispatchable power plants. International Journal of Heat
dc.relation.referencesand Mass Transfer Volume 135, Pages 950–961.
dc.relation.referencesWenjing Ge, Yuanbin Zhao, Shiwei Song, Wendong Li, Shasha Gao, Tie Feng Chen. (2020) Thermal
dc.relation.referencescharacteristics of dry cooling tower reconstructed from obsolete natural draft wet coolingtower and the relevant
dc.relation.referencesthermal system coupling optimization. Applied Thermal Engineering. Volume 174, 115202.
dc.relation.referencesZ. Nourani, A. Naserbegi, Sh. Tayyebi & M. Aghaie. (2019) Thermodynamic evaluation of hybrid cooling
dc.relation.referencestowers based on ambient temperature. Thermal Science and Engineering ProgressVolume 14, Article 100406.
dc.relation.referencesA. Jahangiri, M. M. Yahyaabadi, & A. Sharif. (2019) Exergy and economic analysis of using the flue gas
dc.relation.referencesinjection system of a combined cycle power plant into the Heller Tower to improve the power plant performance.
dc.relation.referencesJournal of Cleaner Production, Volume 2331, Pages 695–710.
dc.relation.referencesPeixin Dong, Antonio S. Kaiser, Zhiqiang Guan, Xiaoxiao Li & Kamel Hooman. (2019) A novel method to
dc.relation.referencespredict the transient start-up time for natural draft dry cooling towers in dispatchable power plants. International
dc.relation.referencesJournal of Heat and Mass Transfer, Volume 145, Article 118794.
dc.relation.referencesXiaoxiao Li, Hal Gurgenci, Zhiqiang Guan, Xurong Wang & Sam Duniam. (2017) Measurements of
dc.relation.referencescrosswind influence on a natural draft dry cooling tower for a solar thermal power plant. Applied EnergyVolume 20615 Pages 1169–1183.
dc.relation.referencesXuehong Chen, Fengzhong Sun, Youliang Chen, MingGao. (2019) Novel method for improving the cooling
dc.relation.referencesperformance of natural draft wet cooling towers. Applied Thermal Engineering. Volume 147, Pages 562–570.
dc.relation.referencesZhigang Dang, Ming Gao, Guoqing Long, Jian Zou, Suoying He, Fengzhong Sun. (2019) Crosswind
dc.relation.referencesinfluence on cooling capacity in different zones for high level water collecting wet coolingtowers based on field test.
dc.relation.referencesJournal of Wind Engineering and Industrial Aerodynamics. Volume 190, Pages 134–142.
dc.relation.referencesPeixin Dong, Xiaoxiao Li, Zhiqiang Guan, & Hal Gurgenci. (2018) The transient start-up process of natural
dc.relation.referencesdraft dry cooling towers in dispatchable thermal power plants. International Journal of Heat and Mass Transfer
dc.relation.referencesVolume 123 Pages 201–212.
dc.relation.referencesBosak M., Cherniuk V., Matlai I., Bihun I. (2019) Studying the mutual interaction of hydraulic characteristics of water distributing pipelines and their
dc.relation.referencesspraying devices in the coolers at energy units. Eastern-European
dc.relation.referencesJournal of Enterpricse Technologies. Volume 3/8 (99). Pages 23–29.
dc.relation.referencesenM. Deziani, .Kh. Rahmani, S. J. Mirrezaei Roudaki & M. Kordloo, M. (2017) Feasibility study for reduce
dc.relation.referencesenwater evaporative loss in a power plant cooling tower by using air to Air heat exchanger with auxiliary Fan.
dc.relation.referencesenDesalination Volume 40616, 119–124.
dc.relation.referencesenAli Reza Seifi, Omid AliAkbari, Abdullah A.A.A.Alrashed, FazelAfshary, Gholamreza Ahmadi, Sheikh
dc.relation.referencesenShabani, Reza Seifi, Marjan Goodarzi, Farzad Pourfattah (2018) Effects of external wind breakers of Heller dry
dc.relation.referencesencooling system in power plants. Applied Thermal Engineering. Volume 129, Pages 1124–1134.
dc.relation.referencesenReza Alizadeh Kheneslu, Ali Jahangiri & Mohammad Ameri (2020) Interaction effects of natural draft dry
dc.relation.referencesencooling tower (NDDCT) performance and 4E (energy, exergy, economic and environmental) analysis of steam
dc.relation.referencesenpower plant under different climatic conditions. Sustainable Energy Technologies and AssessmentsVolume 37, 2020Article 100599.
dc.relation.referencesenGuangjun Yang, Li Ding, Tongqing Guo, Xiaoxiao Li Wenxin Tian, Zhen Xu, Zhigang Wang, Furong Sun,
dc.relation.referencesenJunjieMin, Jingxin Xu, Sheng Wang, Zhaobing Guo. (2020) Study of flue gas emission and improvement measure
dc.relation.referencesenin a natural draft dry-cooling tower with flue gas injection under unfavorable working conditions. Atmospheric
dc.relation.referencesenPollution Research. Volume 11, Issue 5, Pages 963–972.
dc.relation.referencesenPeixin Dong, Xiaoxiao Li, Kamel Hooman, Yubiao Sun, & Hal Gurgenci. (2019) The crosswind effects on
dc.relation.referencesenthe start-up process of natural draft dry cooling towers in dispatchable power plants. International Journal of Heat
dc.relation.referencesenand Mass Transfer Volume 135, Pages 950–961.
dc.relation.referencesenWenjing Ge, Yuanbin Zhao, Shiwei Song, Wendong Li, Shasha Gao, Tie Feng Chen. (2020) Thermal
dc.relation.referencesencharacteristics of dry cooling tower reconstructed from obsolete natural draft wet coolingtower and the relevant
dc.relation.referencesenthermal system coupling optimization. Applied Thermal Engineering. Volume 174, 115202.
dc.relation.referencesenZ. Nourani, A. Naserbegi, Sh. Tayyebi & M. Aghaie. (2019) Thermodynamic evaluation of hybrid cooling
dc.relation.referencesentowers based on ambient temperature. Thermal Science and Engineering ProgressVolume 14, Article 100406.
dc.relation.referencesenA. Jahangiri, M. M. Yahyaabadi, & A. Sharif. (2019) Exergy and economic analysis of using the flue gas
dc.relation.referenceseninjection system of a combined cycle power plant into the Heller Tower to improve the power plant performance.
dc.relation.referencesenJournal of Cleaner Production, Volume 2331, Pages 695–710.
dc.relation.referencesenPeixin Dong, Antonio S. Kaiser, Zhiqiang Guan, Xiaoxiao Li & Kamel Hooman. (2019) A novel method to
dc.relation.referencesenpredict the transient start-up time for natural draft dry cooling towers in dispatchable power plants. International
dc.relation.referencesenJournal of Heat and Mass Transfer, Volume 145, Article 118794.
dc.relation.referencesenXiaoxiao Li, Hal Gurgenci, Zhiqiang Guan, Xurong Wang & Sam Duniam. (2017) Measurements of
dc.relation.referencesencrosswind influence on a natural draft dry cooling tower for a solar thermal power plant. Applied EnergyVolume 20615 Pages 1169–1183.
dc.relation.referencesenXuehong Chen, Fengzhong Sun, Youliang Chen, MingGao. (2019) Novel method for improving the cooling
dc.relation.referencesenperformance of natural draft wet cooling towers. Applied Thermal Engineering. Volume 147, Pages 562–570.
dc.relation.referencesenZhigang Dang, Ming Gao, Guoqing Long, Jian Zou, Suoying He, Fengzhong Sun. (2019) Crosswind
dc.relation.referenceseninfluence on cooling capacity in different zones for high level water collecting wet coolingtowers based on field test.
dc.relation.referencesenJournal of Wind Engineering and Industrial Aerodynamics. Volume 190, Pages 134–142.
dc.relation.referencesenPeixin Dong, Xiaoxiao Li, Zhiqiang Guan, & Hal Gurgenci. (2018) The transient start-up process of natural
dc.relation.referencesendraft dry cooling towers in dispatchable thermal power plants. International Journal of Heat and Mass Transfer
dc.relation.referencesenVolume 123 Pages 201–212.
dc.relation.referencesenBosak M., Cherniuk V., Matlai I., Bihun I. (2019) Studying the mutual interaction of hydraulic characteristics of water distributing pipelines and their
dc.relation.referencesenspraying devices in the coolers at energy units. Eastern-European
dc.relation.referencesenJournal of Enterpricse Technologies. Volume 3/8 (99). Pages 23–29.
dc.citation.issue2
dc.citation.spage1
dc.citation.epage9
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Theory and Building Practice. – 2020. – Vol. 2, No. 2

Files in This Item:
File Description SizeFormat 
2020v2n2_Bosak_M-The_Research_of_Circulation_Water_1-9.pdf462.12 kBAdobe PDFView/Open
2020v2n2_Bosak_M-The_Research_of_Circulation_Water_1-9__COVER.png422.6 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.