https://oldena.lpnu.ua/handle/ntb/56550
Title: | Функціонально інтегровані графен-сенсори на основі поєднання магнітних та теплових методів |
Other Titles: | Functionally integrated sensors-graphene on magnetic and thermal methods combination basis |
Authors: | Петровська, Г. А. Яремчук, І. Я. Малинич, С. З. Бобицький, Я. В. Petrovska, H. Yaremchuk, I. Malynych, S. Bobitski, Ya. |
Affiliation: | Національний університет “Львівська політехніка” Lviv Polytechnic National University |
Bibliographic description (Ukraine): | Функціонально інтегровані графен-сенсори на основі поєднання магнітних та теплових методів / Г. А. Петровська, І. Я. Яремчук, С. З. Малинич, Я. В. Бобицький // Вісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації. — Львів : Видавництво Львівської політехніки, 2019. — № 914. — С. 17–22. |
Bibliographic description (International): | Functionally integrated sensors-graphene on magnetic and thermal methods combination basis / H. Petrovska, I. Yaremchuk, S. Malynych, Ya. Bobitski // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Radioelektronika ta telekomunikatsii. — Lviv : Lviv Politechnic Publishing House, 2019. — No 914. — P. 17–22. |
Is part of: | Вісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації, 914, 2019 |
Journal/Collection: | Вісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації |
Issue: | 914 |
Issue Date: | 26-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | поверхнева рельєфна решітка фотостимульоване травлення глибина модуляції решітки surface relief grating photostimulated etching depth of grating modulation |
Number of pages: | 6 |
Page range: | 17-22 |
Start page: | 17 |
End page: | 22 |
Abstract: | Подано оптимізовану технологію виготовлення методом фотостимульованого
травлення напівпровідників поверхневої дифракційної решітки. Це дає змогу отримати
решітки з контрольованим періодом та глибиною поверхневої модуляції. Проведено
математичне моделювання синусоїдальних рельєфних решіток на поверхні GaAs. Крім
того, оптимізовано їх параметри. Обрано оптимальні періоди решіток. Отримано
залежності ефективності дифракції від поверхні модуляції рельєфу для різних довжин
хвиль. Встановлено, що максимальна ефективність решітки спостерігається при
відношенні глибини поверхні рельєфу до періоду, який приблизно дорівнює 1:10. Для
запису рельєфних решіток використовували лазер Nd: YAG на другій гармоніці (532 нм)
з максимальною потужністю 100 мВт. Для вивчення рельєфу решіток був використаний
атомно-силовий мікроскоп. Показано, що легування GaAs телуром призводить до
сильного розвитку морфології поверхні та більшої глибини модуляції поверхні напівпровідника. The optimized technology of the fabrication by the method of photostimulated etching of semiconductors of the surface diffraction grating is presented. It allows obtain the gratings with a controlled period and a depth of surface modulation. The mathematical modeling of the sinusoidal relief gratings on the GaAs surface has been carried out. In additional, their parameters have been optimized. The optimal gratings periods were selected. The dependences of diffraction efficiency on the surface of relief modulation were obtained for different wavelengths. It is established that the maximum grating efficiency is observed at a relief surface depth ratio to the period which is approximately equal to 1:10. The Nd: YAG laser on the second harmonic (532 nm) with a maximum power of 100 mW was used to record the relief gratings. It is easy to restructure the period of the recording grating using proposed scheme. There is an additional Michelson interferometer to control the stability of the interference pattern during the exposure process. In addition, in the optical scheme, it is proposed to introduce control over the diffraction efficiency of the grating during its recording. The additional diode laser with a wavelength of 650 nm is used for testing. It is directed to the surface of the GaAs plate at an angle of maximum efficiency of the recording grating for the wave of 650 nm. This control allowed the recording of gratins with the optimum depth of modulation. The conditions of the photostimulated etching of the gratings were optimized. Results of experiments have shown that in order to achieve the optimum depth of grating modulation in accordance with the results of theoretical modeling, it is necessary to select the concentration of the etchant depending on the type of semiconductor and the degree of its doping. It has been established that optimum concentration of etchant increases when degree of doping of the GaAs increases. The Atomic-force microscope to study the gratings relief was used. It is shown that doping GaAs by tellurium leads to a strong development of the surface morphology and a higher modulation depth of the surface of the semiconductor |
URI: | https://ena.lpnu.ua/handle/ntb/56550 |
Copyright owner: | © Національний університет “Львівська політехніка”, 2019 © Петровська Г. А., Яремчук І. Я., Малинич Я. В., Бобицький Я. В., 2019 |
References (Ukraine): | 1. Méndez-Camacho, R., López-López, M., Méndez-García, V. H., Valdez-Pérez, D., Ortega, E., Benitez, A., ... & Cruz-Hernández, E. (2017),“Nanowire Y-junction formation during self-faceting on highindex GaAs substrates” RSC Advances, vol. 7, no 29, pp.17813–17818. 2. Xia, T., Cho, Y., Cotrufo, M., Agafonov, I., Van Otten, F., & Fiore, A. (2015), “In-assisted deoxidation of GaAs substrates for the growth of single InAs/GaAs quantum dot emitters”. Semiconductor Science and Technology, vol. 30, no 5, pp. 055009. 3. Lacour, V., Herth, E., Lardet-Vieudrin, F., Dubowski, J. J., & Leblois, T. (2015), “GaAs based on bulk acoustic wave sensor for biological molecules detection”. Procedia Engineering, vol. 120, pp. 721–726. 4. Liu, H. W., Lin, F. C., Lin, S. W., Wu, J. Y., Chou, B. T., Lai, K. J., & Huang, J. S. (2015), “Single-crystalline aluminum nanostructures on a semiconducting GaAs substrate for ultraviolet to near-infrared plasmonics”. ACS nano, vol. 9, no 4, pp. 3875–3886. 5. Dmitruk, N. L., Mayeva, O. I., Korovin, A. V., Mamykin, S. V., Sosnova, M. V., & Yastrubchak, O. B. (2007), “Characterization of nanoscaled films on flat and grating substrates as some elements of plasmonics”. . Semiconductor Physics Quantum Electronics & Optoelectronics, vol 10, pp. 62–71. 6. Petrini, I., Müller, A., Avramescu, V., Simion, G., Nitescu, N., Vasilache, D., ... & Giacomozzi, F. (2000), “Resistive pressure sensing structures on polyimide membranes on GaAs substrate. Journal of Micromechanics and Microengineering”, vol. 10, no 2, pp. 218. 7. Lalinský, T., Držík, M., Jakovenko, J., & Husák, M. (2006),“GaAs Thermally Based MEMS Devices–Fabrication Techniques, Characterization and Modeling”. In MEMS/NEMS Springer, Boston, MA., pp. 383–443. 8. Boltovets, N. S., Dugaev, V. K., Kholevchuk, V. V., McDonald, P. C., Mitin, V. F., Nemish, I. Y., ... & Venger, E. F. (2003), “New generation of resistance thermometers based on Ge films on GaAs substrates”. In AIP Conference Proceedings, vol. 684, no 1, pp. 399–404. 9. Yaremchuk, I., Petrovska, H., Fitio, V., & Bobitski, Y. (2017), “Optimization and Fabrication of the Gold-Coated GaAs Diffraction Gratings for Surface Plasmon Resonance Sensors”. Optik-International Journal for Light and Electron Optics, vol. 158, pp. 535–540. 10. Yaremchuk, I., Petrovska, H., Fitio, V., Bobitski, Y., Sheregii, E., & Wojnarowska-Nowak, R. (2017) “Sensors element on base of the relief Aucoated GaAs grating”. In Electrical and Computer Engineering (UKRCON), 2017 IEEE First Ukraine Conference, pp. 709–712. 11. Quagliano, L.G. Human, (2002)“Spermatozoa on Nanostrucutured Ag Deposited on GaAs Surface”. MRS Online Proceedings Library Archive, pp. 735. 12. Jiang, D. S., Li, X. P., Sun, B. Q., & Han, H. X. A. (1999), “Raman scattering study of GaAs: As films lifted off GaAs substrate”. Journal of Physics D: Applied Physics, vol. 32, no 6, pp. 629. 13. Sun, Y., & Pelton, M. (2009),“Laser-driven growth of silver nanoplates on p-type GaAs substrates and their surface-enhanced Raman scattering activity”. The Journal of Physical Chemistry C, vol. 113, no 15, pp. 6061–6067. 14. Chatzakis, I., Tassin, P., Luo, L., Shen, N. H., Zhang, L., Wang, J., ... & Soukoulis, C. M. (2013),“Oneand two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves”. Applied Physics Letters, vol. 103, no 4, pp. 043101. 15. Tahirovich, A. Z., Alimdjanovna, A. N., Shavkatovich, M. A., Abdullayevich, M. R., Ivanovich, R. V., Faritovich, T. O., & Aminovich, K. I. (2014), “Multilayer GaAsBased Heterostructures with Holographic Concentrator for Solar Cells”. Materials Sciences and Applications, vol. 5, no 12, pp. 871. 16. Pusino, V., Xie, C., Khalid, A., Steer, M. J., Sorel, M., Thayne, I. G., & Cumming, D. R. (2016), “InSb photodiodes for monolithic active focal plane arrays on GaAs substrates”. IEEE Transactions on Electron Devices, vol. 63, no 8, pp. 3135–3142. 17. Lo, Y. H., Bhat, R., Hwang, D. M., Koza, M. A., & Lee, T. P. (1991), “Bonding by atomic rearrangement of InP/InGaAsP 1.5 μm wavelength lasers on GaAs substrates”. Applied physics letters, vol. 58, no 18, pp. 1961–1963. 18. Aziz, M., Xie, C., Pusino, V., Khalid, A., Steer, M., Thayne, I. G., & Cumming, D. R. (2017), “Multispectral mid-infrared light emitting diodes on a GaAs substrate”. Applied Physics Letters, vol. 111, no 10, pp. 102102. 19. Ziegler, M., Pomraenke, R., Felger, M., Tomm, J. W., Vasa, P., Lienau, C., ... & Erbert, G, (2008),“Infrared emission from the substrate of GaAs-based semiconductor lasers”. Applied Physics Letters, vol. 93, no 4, pp. 041101. 20. Almuneau, G., Condé, M., Gauthier-Lafaye, O., Bardinal, V., & Fontaine, C. (2010), “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack”. Journal of Optics, vol. 13, no 1, pp. 015505. 21. Allwood, D. A., Carline, R. T., Mason, N. J., Pickering, C., Tanner, B. K., & Walker, P. J. (2000), “Characterization of oxide layers on GaAs substrates”. Thin Solid Films, vol. 364, no 1–2, pp. 33–39. 22. Almuneau, G., Condé, M., Gauthier-Lafaye, O., Bardinal, V., & Fontaine, C. (2010), “High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack”. Journal of Optics, vol. 13, no 1, pp. 015505. 23. Mao, H., Alhalaili, B., Kaya, A., Dryden, D. M., Woodall, J. M., & Islam, M. S. (2017), “Oxidation of GaAs substrates to enable β-Ga2O3 films for sensors and optoelectronic devices”. In Wide Bandgap Power Devices and Applications II . International Society for Optics and Photonics. Vol. 10381, pp. 103810B. 24. Mitin, V. F., Lazarov, V. K., Lytvyn, P. M., Hasnip, P. J., Kholevchuk, V. V., Matveeva, L. A., ... & Venger, E. F. (2011), “Tailoring the electrical properties of Ge/GaAs by film deposition rate and preparation of fully compensated Ge films”. Physical Review B, vol. 84, no 12, pp. 125316. 25. Tsang, W. T., & Wang, S. (1976), “Profile and groove-depth control in GaAs diffraction gratings fabricated by preferential chemical etching in H2SO4-H2O2-H2O system”. Applied Physics Letters, vol. 28, no 1, pp. 44–46. |
References (International): | 1. Méndez-Camacho, R., López-López, M., Méndez-García, V. H., Valdez-Pérez, D., Ortega, E., Benitez, A., ... & Cruz-Hernández, E. (2017),"Nanowire Y-junction formation during self-faceting on highindex GaAs substrates" RSC Advances, vol. 7, no 29, pp.17813–17818. 2. Xia, T., Cho, Y., Cotrufo, M., Agafonov, I., Van Otten, F., & Fiore, A. (2015), "In-assisted deoxidation of GaAs substrates for the growth of single InAs/GaAs quantum dot emitters". Semiconductor Science and Technology, vol. 30, no 5, pp. 055009. 3. Lacour, V., Herth, E., Lardet-Vieudrin, F., Dubowski, J. J., & Leblois, T. (2015), "GaAs based on bulk acoustic wave sensor for biological molecules detection". Procedia Engineering, vol. 120, pp. 721–726. 4. Liu, H. W., Lin, F. C., Lin, S. W., Wu, J. Y., Chou, B. T., Lai, K. J., & Huang, J. S. (2015), "Single-crystalline aluminum nanostructures on a semiconducting GaAs substrate for ultraviolet to near-infrared plasmonics". ACS nano, vol. 9, no 4, pp. 3875–3886. 5. Dmitruk, N. L., Mayeva, O. I., Korovin, A. V., Mamykin, S. V., Sosnova, M. V., & Yastrubchak, O. B. (2007), "Characterization of nanoscaled films on flat and grating substrates as some elements of plasmonics". . Semiconductor Physics Quantum Electronics & Optoelectronics, vol 10, pp. 62–71. 6. Petrini, I., Müller, A., Avramescu, V., Simion, G., Nitescu, N., Vasilache, D., ... & Giacomozzi, F. (2000), "Resistive pressure sensing structures on polyimide membranes on GaAs substrate. Journal of Micromechanics and Microengineering", vol. 10, no 2, pp. 218. 7. Lalinský, T., Držík, M., Jakovenko, J., & Husák, M. (2006),"GaAs Thermally Based MEMS Devices–Fabrication Techniques, Characterization and Modeling". In MEMS/NEMS Springer, Boston, MA., pp. 383–443. 8. Boltovets, N. S., Dugaev, V. K., Kholevchuk, V. V., McDonald, P. C., Mitin, V. F., Nemish, I. Y., ... & Venger, E. F. (2003), "New generation of resistance thermometers based on Ge films on GaAs substrates". In AIP Conference Proceedings, vol. 684, no 1, pp. 399–404. 9. Yaremchuk, I., Petrovska, H., Fitio, V., & Bobitski, Y. (2017), "Optimization and Fabrication of the Gold-Coated GaAs Diffraction Gratings for Surface Plasmon Resonance Sensors". Optik-International Journal for Light and Electron Optics, vol. 158, pp. 535–540. 10. Yaremchuk, I., Petrovska, H., Fitio, V., Bobitski, Y., Sheregii, E., & Wojnarowska-Nowak, R. (2017) "Sensors element on base of the relief Aucoated GaAs grating". In Electrical and Computer Engineering (UKRCON), 2017 IEEE First Ukraine Conference, pp. 709–712. 11. Quagliano, L.G. Human, (2002)"Spermatozoa on Nanostrucutured Ag Deposited on GaAs Surface". MRS Online Proceedings Library Archive, pp. 735. 12. Jiang, D. S., Li, X. P., Sun, B. Q., & Han, H. X. A. (1999), "Raman scattering study of GaAs: As films lifted off GaAs substrate". Journal of Physics D: Applied Physics, vol. 32, no 6, pp. 629. 13. Sun, Y., & Pelton, M. (2009),"Laser-driven growth of silver nanoplates on p-type GaAs substrates and their surface-enhanced Raman scattering activity". The Journal of Physical Chemistry C, vol. 113, no 15, pp. 6061–6067. 14. Chatzakis, I., Tassin, P., Luo, L., Shen, N. H., Zhang, L., Wang, J., ... & Soukoulis, C. M. (2013),"Oneand two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves". Applied Physics Letters, vol. 103, no 4, pp. 043101. 15. Tahirovich, A. Z., Alimdjanovna, A. N., Shavkatovich, M. A., Abdullayevich, M. R., Ivanovich, R. V., Faritovich, T. O., & Aminovich, K. I. (2014), "Multilayer GaAsBased Heterostructures with Holographic Concentrator for Solar Cells". Materials Sciences and Applications, vol. 5, no 12, pp. 871. 16. Pusino, V., Xie, C., Khalid, A., Steer, M. J., Sorel, M., Thayne, I. G., & Cumming, D. R. (2016), "InSb photodiodes for monolithic active focal plane arrays on GaAs substrates". IEEE Transactions on Electron Devices, vol. 63, no 8, pp. 3135–3142. 17. Lo, Y. H., Bhat, R., Hwang, D. M., Koza, M. A., & Lee, T. P. (1991), "Bonding by atomic rearrangement of InP/InGaAsP 1.5 mm wavelength lasers on GaAs substrates". Applied physics letters, vol. 58, no 18, pp. 1961–1963. 18. Aziz, M., Xie, C., Pusino, V., Khalid, A., Steer, M., Thayne, I. G., & Cumming, D. R. (2017), "Multispectral mid-infrared light emitting diodes on a GaAs substrate". Applied Physics Letters, vol. 111, no 10, pp. 102102. 19. Ziegler, M., Pomraenke, R., Felger, M., Tomm, J. W., Vasa, P., Lienau, C., ... & Erbert, G, (2008),"Infrared emission from the substrate of GaAs-based semiconductor lasers". Applied Physics Letters, vol. 93, no 4, pp. 041101. 20. Almuneau, G., Condé, M., Gauthier-Lafaye, O., Bardinal, V., & Fontaine, C. (2010), "High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack". Journal of Optics, vol. 13, no 1, pp. 015505. 21. Allwood, D. A., Carline, R. T., Mason, N. J., Pickering, C., Tanner, B. K., & Walker, P. J. (2000), "Characterization of oxide layers on GaAs substrates". Thin Solid Films, vol. 364, no 1–2, pp. 33–39. 22. Almuneau, G., Condé, M., Gauthier-Lafaye, O., Bardinal, V., & Fontaine, C. (2010), "High reflectivity monolithic sub-wavelength diffraction grating with GaAs/AlOx stack". Journal of Optics, vol. 13, no 1, pp. 015505. 23. Mao, H., Alhalaili, B., Kaya, A., Dryden, D. M., Woodall, J. M., & Islam, M. S. (2017), "Oxidation of GaAs substrates to enable b-Ga2O3 films for sensors and optoelectronic devices". In Wide Bandgap Power Devices and Applications II . International Society for Optics and Photonics. Vol. 10381, pp. 103810B. 24. Mitin, V. F., Lazarov, V. K., Lytvyn, P. M., Hasnip, P. J., Kholevchuk, V. V., Matveeva, L. A., ... & Venger, E. F. (2011), "Tailoring the electrical properties of Ge/GaAs by film deposition rate and preparation of fully compensated Ge films". Physical Review B, vol. 84, no 12, pp. 125316. 25. Tsang, W. T., & Wang, S. (1976), "Profile and groove-depth control in GaAs diffraction gratings fabricated by preferential chemical etching in H2SO4-H2O2-H2O system". Applied Physics Letters, vol. 28, no 1, pp. 44–46. |
Content type: | Article |
Appears in Collections: | Радіоелектроніка та телекомунікації. – 2019. – №914 |
File | Description | Size | Format | |
---|---|---|---|---|
2019n914_Petrovska_H-Functionally_integrated_17-22.pdf | 619.18 kB | Adobe PDF | View/Open | |
2019n914_Petrovska_H-Functionally_integrated_17-22__COVER.png | 466.34 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.